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� of Sn an be regarded as a subset K of E. (Namely,K = fij 2 E : �(i) = jg.) We oftenregard a permutation to be suh a set K. That is, a permutation an be onsidered to bea set K � E suh that eah vertex of the digraph (V;K) has indegree and outdegree equalto 1. Let x 2 RE be the harateristi vetor of an element K of Sn. (We will often use\permutation" as an abbreviation for \harateristi vetor of a permutation", and thinkof a set of permutations as the set of their harateristi vetors.) Then x satis�esXj2V xvj = 1 (v 2 V ) (1)Xi2V xiv = 1 (v 2 V ) (2)xij � 0 (ij 2 E): (3)A famous theorem of Birkho� [2℄ states that the onvex hull P (n) of Sn is preisely theset of solutions of the system (1), (2), and (3). (P (n) may be viewed as the set of n � ndoubly stohasti matries.)Ho�man (see Mirsky [9℄) asked whether there is a similar haraterization of the onvexhullQ(n) of the even permutations. That is, Ho�man asked whether the polytope Q(n) an,like P (n), be haraterized expliitly as the solution set of a system of linear inequalities.Mirsky alled the elements of Q(n) even doubly stohasti matries. From the point ofview of the digraph G, an even permutation is a permutation K suh that the number ofomponents of (V;K) having an even number of edges, is even.Mirsky gave a family of valid inequalities for Q(n); later, von Below [1℄ proved thatthe solution set of this family is equal to Q(n) if and only if n � 3. Brualdi and Liu [4℄proved several results about Q(n). They established its dimension, haraterized adjaenyof extreme points, and proved that it has diameter 2. They also gave several lasses ofnonlinear inequalities that must be satis�ed by elements of Q(n). Finally, they made thefollowing onjeture, suggesting that Q(n) is muh more ompliated than P (n).Conjeture 1. Q(n) annot be haraterized as the solution set of a system of polynomiallymany (in n) linear inequalities.In this note, we prove Conjeture 1 by expliitly onstruting a family of 12n(n � 1)n!linear inequalities, eah of whih (if n � 5) indues a distint faet of Q(n). We showthat no inequality in Mirsky's lass indues a faet for n � 4. We also give a ompletedesription of Q(4). Finally, we disuss the diÆulty of deiding membership in Q(n).After this paper was written, we learned of a paper by Hood and Perkinson [6℄. It alsoproves Conjeture 1. Some remarks on the work in that paper an be found after the proofof Theorem 6. 2



PreliminariesWe reall here a few basi fats from polyhedral theory. More details an be found inShrijver [11℄. The equations (1), (2) are satis�ed by every point in Q(n). Sine thissystem of 2n equations is easily seen to have rank 2n�1, the dimension of Q(n) is at mostn2� (2n�1) = (n�1)2. Brualdi and Liu [4℄ showed that its dimension is exatly (n�1)2,provided that n � 4. (We will generally assume n � 4, to avoid some trivial exeptions.)It follows that the solution set of (1), (2) is the aÆne hull of Q(n).An inequality aTx � a0 is valid for Q(n) if it is satis�ed by every point of Q(n). Afae of Q(n) is a set of the form fx̂ 2 Q(n) : aT x̂ = a0g for some valid inequality aTx � a0for Q(n). The inequality is said to indue the fae. An even permutation K is a-tight (orjust tight if a is understood) if it is in the fae indued by aTx � a0. A faet of Q(n) is amaximal proper fae of Q(n). A fae of Q(n) is a faet if and only if it ontains an aÆnelyindependent set of (n� 1)2 even permutations.Let Ax = 1 denote the system (1), (2) of equations. Q(n) is the solution set of a systemof the form Ax = 1, A0x � b0 for some A0; b0. Any suh system must ontain an inequalityinduing F for every faet F of Q(n) (and need not ontain any others). Thus, to showthat Conjeture 1 is true, it is enough to exhibit suÆiently many faets of Q(n). Twovalid inequalities aTx � a0 and bTx � b0 for Q(n) are said to be equivalent if they induethe same fae. Clearly, aTx � a0 and bTx � b0 are equivalent if there exist � 2 R with� > 0 and y 2 R2n suh that (aT ; a0) = �(bT ; b0) + yT (A;1). It is known that, if aTx � a0and bTx � b0 are faet-induing, then the onverse is true. A basis for A is a subset B ofE of size 2n � 1 indexing a linearly independent set of olumns of A. It is easy to hekthat, for any r; s 2 V (possibly equal) the set frj : j 2 V g [ fis : i 2 V g is a basis ofA. Given a basis B of A and any valid inequality aTx � a0, there exists an equivalentvalid inequality bTx � b0 suh that be = 0 for all e 2 B. We say that suh an inequalitybTx � b0 is in B-redued form. If aTx � a0 is faet-induing, then bTx � b0 is unique upto multipliation by a positive salar.Here is some digraph notation. Let U;W be subsets of V . We write (U;W ) to denotefij 2 E : i 2 U; j 2 Wg. For u 2 V , we may abbreviate (fug;W ) to (u;W ), and similarlyfor (W; fug). We write E(U) to denote (U;U). For any J � E, let V (J) denote the setfv 2 V : v is inident with some e 2 Jg.Finally, for a vetor y 2 RE and a subset F of E, we use y(F ) to denote P(ye : e 2 F ).For y 2 RE and U;W subsets of V , we abbreviate y((U;W )) to y(U;W ). (To illustratesome of this notation, equation (1) ould be written x(v; V ) = 1 (v 2 V ).)Mirsky's Class of InequalitiesMirsky [9℄ �rst introdued a lass of valid inequalities forQ(n). Until very reently,Mirsky'slass was the only known lass of valid linear inequalities for Q(n) (other than inequalities3



that are valid for P (n)). This lass of inequalities an be desribed as follows. Let L bean even permutation of V , and let uv 2 L. Then the Mirsky inequality determined by Land uv is x(L)� 3xuv � n � 3: (4)It is easy to see that (4) is valid for Q(n). (If x is the harateristi vetor of a permutationK and uv 2 K, then x(L) � 3xuv = x(L) � 3 � n � 3. If uv =2 K, then jK \ Lj � n � 2,and equality an hold only if K is odd.) It is also easy to see that, if x is the harateristivetor of an odd permutation of V , then there is an inequality of Mirsky type that itviolates. However, as observed in [1℄, Mirsky's inequalities together with (1), (2), and (3)do not de�ne Q(n) for any n � 4. We show something stronger here.Theorem 1 If n � 4, no Mirsky inequality is faet-induing for Q(n).Proof. Let aTx � a0 denote the Mirsky inequality determined by the even permutationL and uv 2 L. Suppose that the even permutation K of V is tight, that is, it satis�esaTx � a0 with equality. If uv 2 K, then we must have K = L. If uv =2 K, then wemust have jK \ Lj = n � 3, so there are three edges uv; ab; d 2 LnK. Consider the setM = Lnfuv; ab; dg. It onsists of three direted paths together with a number (possiblyzero) of yles. K is formed by adding to M three edges, none of them uv. It is easy tosee that there are exatly two ways to do this. Therefore, sine there are �n�12 � hoies forfab; dg, there are exatly (n�1)(n�2)+1 = n2�3n+3 tight even permutations. The sizeof a set of aÆnely independent even permutations in the fae indued by aTx � a0 annotexeed this number, whih is smaller (sine n � 4) than (n � 1)2. Therefore, aTx � a0does not indue a faet of Q(n).A Class of Faet-induing Inequalities of Q(n)Let t; h be distint verties of G, and let R denote V nft; hg. Let � be an even permutationof V . The triple (t; h; �) determines the following inequality:Xv2Rxv�(v) +Xv2Rxv�(t) +Xv2Rxt�(v) � n� 2: (5)This inequality is in the form x(C) � n � 2 for some C � E with jCj = 3n � 6: It isquite easy to see that for n � 5, eah di�erent hoie of (t; h; �) gives a di�erent set C,and hene a di�erent inequality (5). Sine there are n(n � 1) hoies of t; h and 12n! evenpermutations, we get a family of 12n(n � 1)n! di�erent inequalities for n � 5. For n = 4,however, the sets C are not all distint; in fat, in this ase, only 48 di�erent inequalitiesarise.Theorem 2 Inequality (5) is valid for Q(n).4



Proof. Let K be an even permutation of V and let f; g; h denote the values of the threesums in (5) when x is replaed by the harateristi vetor of K. Clearly, f � n � 2 andg; h � 1. It follows that we need only onsider the ases in whih f is n � 2 or n � 3.In the former ase, xv�(v) = 1 for all v 2 R, and it follows that f = g = 0 and so (5) issatis�ed. (We did not need that K is even to make this onlusion.) Now suppose thatf = n� 3. Then there is a unique u 2 R suh that xu�(u) = 0. If the inequality is violated,then f = g = 1, from whih it follows that xu�(t) = xt�(u) = 1. Therefore, K must be thepermutation obtained from � by multiplying it by the transposition (ut), and so K is odd,a ontradition.Theorem 3 If n � 4, inequality (5) indues a faet of Q(n).Let � be a �xed even permutation of V . For any even permutation � of V withharateristi vetor z 2 RE, it is easy to see that the vetor y de�ned by yij = zi�(j) isthe harateristi vetor of � Æ �, the permutation mapping i to �(�(i)). Moreover, thetransformation that takes z to y is linear and invertible. (Namely, � indues a permutationof E, and the orresponding E �E permutation matrix is invertible.) These observationsare very useful for transforming valid inequalities.Lemma 4 Let � be an even permutation of V , let aTx � a0 and bTx � b0 be validinequalities for Q(n), and de�ne â and b̂ by âij = ai�(j) and b̂ij = bi�(j). Then(a) âTx � a0 is a valid inequality for Q(n);(b) âTx � a0 is faet-induing if and only if aTx � a0 is;() aTx � a0 is equivalent to bTx � b0 if and only if âTx � a0 is equivalent to b̂Tx � b0.Proof. Let z be the harateristi vetor of an even permutation � of V , and let y bethe harateristi vetor of the (even) permutation � Æ �. ThenâTz = Xij2E ai�(j)zij =Xi2V ai�(�(i)) = Xij2E aijyij � a0;proving (a). Moreover, if y satis�es aTx � a0 with equality, then z satis�es âTx � a0with equality. Therefore, the set of (harateristi vetors of) even permutations satisfyingaTx � a0 with equality is mapped by an invertible linear transformation to a set of evenpermutations satisfying âTx � a0 with equality. It follows that aTx � a0 is faet-induingif and only if âTx � a0 is faet-induing, proving (b). Now suppose that F;H; F̂ ; Ĥ are thefaes indued by aTx � a0, bTx � b0, âTx � a0, and b̂Tx � b0, respetively. Then there isan invertible linear transformation that maps F to F̂ and also maps H to Ĥ. Therefore,F = H if and only if F̂ = Ĥ, proving (). 5



Proof of Theorem 3.In view of part (b) of Lemma 4, it will be enough to prove the result for the ase ofinequality (5) in whih � is the identity permutation. So we want to prove thatXv2Rxvv +Xv2Rxvt +Xv2Rxtv � n � 2 (6)indues a faet of Q(n).We denote the inequality (6) by aTx � a0. Suppose that the fae indued by aTx � a0is ontained in the fae indued by the valid inequality bTx � b0, where b 6= 0. We will showthat this ontainment annot be proper, and hene that aTx � a0 indues a faet. Notiethat aTx � a0 is B-redued with respet to the basis B = (h; V ) [ (V; h) of A. We mayassume that bTx � b0 is also B-redued. Sine the fae indued by aTx � a0 is ontainedin the fae indued b y bTx � b0, every a-tight even permutation is also b-tight. Therefore,if we have two a-tight permutations, then we get an equation involving the omponents ofb. Using this repeatedly we will show that bTx � b0 is a positive multiple of aTx � a0. Itis onvenient to use J to denote fvv : v 2 Rg.Claim 1. bvt = btv = bvv + btt for all v 2 R.Proof of Claim 1. The permutations J [ftt; hhg; (Jnfvvg)[fvt; th; hvg and (Jnfvvg)[fvh; ht; tvg are even and tight. Sine be = 0 for all e 2 B, the result follows.Claim 2. btt = 0:Proof of Claim 2. Let u; v be distint elements of R. Sine J[ftt; hhg and (Jnfuu; vvg)[ftv; vt; hu; uhg are even and tight, we havebuu + bvv + btt = bvt + btv = 2(buu + btt);where the seond equality follows from Claim 1. Therefore, bvv = buu + btt: Sine u and vould be interhanged, the result follows.Claim 3. There is a number � suh that bvt = but = � for all u; v 2 R.Proof of Claim 3. The permutations (Jnfvvg)[fvt; th; hvg and (Jnfuug)[fut; th; hugare even and tight. The result now follows from Claims 1 and 2 and the fat that be = 0for all e 2 B.Claim 4. Let u; v be distint elements of R. Then buv = 0.Proof of Claim 4. The permutation (J [ fuv; vt; tu; hhg)nfuu; vvg is even and tight.This gives buv + 2� = 2�, so buv = 0:Notie that, sine J [ ftt; hhg is even and tight, we now have b0 = (n� 2)�. We haveshown that bTx � b0 is �(aTx � a0). Therefore, it indues the same fae as aTx � a0, soaTx � a0 is faet-induing.To �nish the proof of Conjeture 1, we need to show that distint inequalities (5) induedi�erent faets of Q(n).Theorem 5 For n � 5, inequalities of the form (5) indue 12n(n� 1)n! di�erent faets ofQ(n). For n = 4, they indue 48 distint faets.6



Proof. Eah inequality (5) an be written in the form x(C) � n�2, and it will be enoughto show that, for all n � 4, the inequalities for distint sets C indue distint faets. Letx(C) � n�2 and x(C 0) � n�2 be two suh inequalities, determined by hoies t; h; � andt0; h0; �0 respetively. We will show that, unless C = C 0, they are not equivalent.In the subgraph indued by C 0, there is a unique vertex r = h0 having indegree zeroand a unique vertex s = �0(h0) having outdegree zero. Let B = (r; V ) [ (V; s). Then B isa basis for A, and x(C 0) � n � 2 is in B-redued form. We will use the equations (1), (2)to onvert x(C) � n� 2 into an equivalent inequality in B-redued form.First, suppose that rs 2 C. Then we an rewrite x(C) asx(CnB) + x((C \B)nfrsg) + xrs= x(CnB) + Xrj2C;j 6=s xrj + Xis2C;i6=r xis + 1 �Xj 6=s xrj= x(CnB) + Xrj2C;j 6=s(1�Xi6=r xij) + Xis2C;i6=r(1�Xj 6=s xij) + 1 �Xj 6=s(1�Xi6=r xij):Therefore, a B-redued inequality equivalent to x(C) � n� 2 has left-hand sidex(CnB)� Xrj2C;j 6=s Xi6=r xij � Xis2C;i6=r Xj 6=s xij +Xj 6=sXi6=r xij: (7)It will be enough to show that (7) annot be a positive multiple of x(C 0). We �rst provethe following.Claim. There exist u; v 2 V suh that us; rv 2 C and uv =2 C.Proof of Claim. Sine rs 2 C, we know that one of the following three ases holds: (a)r 2 R and s = �(r); (b) r = t and s = �(w) for some w 2 R; () r 2 R and s = �(t).Consider ase (a). Then we an hoose u = t; v = �(t): Now onsider ase (b). Then wehoose any p 2 Rnfwg suh that (t; �(p)) 2 C and �(p) 6= �(w), and take u = w andv = �(p). Finally, in ase (), we hoose some p 2 Rnfrg suh that (p; �(t)) 2 C, and takev = �(r) and u = p. In every ase it is easy to see that u; v have the desired properties.Now it follows from the laim that xuv has oeÆient �1 in (7), and therefore that theB-redued form of x(C) � n � 2 annot be a positive multiple of x(C 0) � n� 2. Finally,we need to deal with the ase in whih rs =2 C. In this ase, the left-hand side of aninequality in B-redued form equivalent to x(C) � n�2 is the same as (7) exept that thelast double sum is missing. But then it will have fewer positive oeÆients and/or morenegative oeÆients than x(C 0), unless the two double sums in the middle are both empty,whih happens only if C = C 0. Hene if C 6= C 0, then x(C) � n� 2 annot be equivalentto x(C 0) � n� 2.One may wonder whether it is possible for one of the new inequalities (5) to be equiv-alent to one of the non-negativity inequalities (3). We show below that it is not. Forompleteness, we prove also that the non-negativity inequalities indue distint faets ofQ(n). 7



Theorem 6 If n � 4 and e 2 E, the inequality xe � 0 is faet-induing. Moreover, it isnot equivalent to any other inequality (3), nor to any inequality from (5).Proof. Note that the transformation of Lemma 4 takes the inequality xij � 0 toxi�(j) � 0. Hene, it suÆes to show for any v 2 V that �xvv � 0 indues a faet. Weonvert this inequality into B-redued form with B = (v; V )[(V; v). So the new inequalityaTx � a0 has ae = 0 for all e 2 B and ae = �1 for all e =2 B. Suppose the fae induedby aTx � a0 is ontained in the fae indued by the valid inequality bTx � b0. Thus, anya-tight even permutation is also b-tight. Choose three distint verties i; j; k in V n fvg.Let J = fuu : u 2 V n fv; i; j; kgg. Then the following permutations are easily seen to beeven and tight: J [ fjk; kj; vi; ivg, J [ fii; jk; vj; kvg, and J [ fii; kj; vj; kvg. It followsthat bjk + bjk = bii + bjk = bii + bkj:Therefore, bjk = bkj = bii = � (say), and 2� = b0 � b(J). By symmetry, it followsthat be = � for all e 2 E(fi; j; kg). Repeating the proess for other hoies of i; j; k (ifneessary), we derive that be = � for all e 62 B and b0 = �(n�2). So bTx � b0 is a multipleof aTx � a0, whih implies that xe � 0 indues a faet of Q(n).Now we wish to show that, for any e 2 E the inequality xe � 0 is not equivalent toany other non-negativity inequality. By Lemma 4, we may assume that e = fuvg, whereu 6= v. Eah of the following permutations is even and does not ontain e:the identity permutation K;(Knfuu; vv; ppg) [ fvu; up; pvg, for any p 2 V nfu; vg;(Knfuu; pp; qqg) [ fup; pq; qug, for any p; q 2 V nfu; vg with p 6= q;(Knfuu; pp; qqg) [ fuq; qp; pug, for any p; q 2 V nfu; vg with p 6= q.Let f be an edge di�erent from e. It is easy to hek that one of the above permutationsontains f . Sine it does not ontain e, it follows that the fae indued by xe � 0 is notequal to the fae indued by xf � 0.Finally, let us show that no inequality (5) is equivalent to a non-negativity inequality.By Lemma 4, it is enough to deal only with the inequalityXv2Rxvv +Xv2Rxvt +Xv2Rxtv � n� 2: (8)Eah of the following permutations is even and satis�es (8) with equality:the identity permutation K;(Knfpp; qq; ttg) [ fpq; qt; tpg, for any p; q 2 R with p 6= q;(Knfvv; tt; hhg)[ fvt; th; hvg, for any v 2 R;(Knfvv; tt; hhg)[ fvh; ht; tvg, for any v 2 R.Let e be any edge. There is a permutation in the above list that ontains e. It follows thatthe fae indued by (8) is di�erent from the fae indued by xe � 0, as required.8



We give a brief desription of the work of Hood and Perkinson [6℄ and relate it to ourwork. They observe that the inequalityX1�i�j�n xij � x22 + x21 � n� 1 (9)is valid for Q(n). They show that it is faet-induing for n � 6, and that it provides bysymmetry 12(n � 1)!n! distint faets. The symmetries here are of two types. One is thesame as we have used, namely, for any even permutation �, replaing aij by ai�(j). Theother is, for any permutation � suh that �(1) = 1, replaing aij by a�(i)�(j). Although theHood-Perkinson lass is larger, it is quite easy to see that it ontains none of the faetsindued by the inequalities (5). Namely, it is shown in [6℄ that the faet indued by (9)ontains the harateristi vetors of exatly 2n�1�1 even permutations, while it is easy tohek that for the faet indued by (6), the orresponding number is 2n2 � 8n+ 9. Thesetwo numbers annot be equal for any integer n � 4, so the two lasses have nothing inommon. Another distintion between the two lasses, is that our lass already providesfaets at n = 4, whih is relevant beause it leads to a haraterization of the polytope inthat ase.A Desription of Q(4)In the ase n = 4 we an prove that the inequalities (5) are all we need to add to thesystem (1), (2), (3) to get a omplete desription for Q(n).Theorem 7 If n = 4, Q(n) is the set of all solutions to the system (1), (2), (3), and (5).It should be pointed out that standard omputer software for dealing with polyhedra,for example, Avis's lrs [7℄, is perfetly apable of omputing the omplete list of faets ofQ(n) for n = 4 and 5. In view of this, it may not be lear why we have inluded a proofof Theorem 7. One reason is that we believe that our proof has some intrinsi interest.Another is that, beause Q(4) is far from full-dimensional, the output of the omputerprogram does not diretly provide a proof. It reveals that the dimension is nine, and givessixty-four faet-induing inequalities. One is then left with the task of onvining oneselfthat these inequalities are equivalent to the muh more attrative system of Theorem 7.Our proof follows a method used previously [3℄. In partiular, we need the followingelementary fat, whih is proved there.Lemma 8 Let P1; P2; P3 be bounded polyhedra in Rm of equal dimension, and suppose thatP1 � P2 � P3. Then there exists a point �x 2 P2nP1 and an extreme point x0 of P3 suhthat �x is in the onvex hull of P1 [ fx0g.Proof of Theorem 7. Let P1 = Q(4), let P2 be the set of solutions of (1), (2), (3), and (5),and let P3 = P (4). Then P1 � P2 � P3, and they have equal dimension. If P1 = P2, we are9



done, so suppose otherwise. Then all the onditions of Lemma 8 are satis�ed. Hene thereis a point �x satisfying (1), (2), (3), and (5) but not in Q(4), permutations x0; x1; : : : ; xk,and positive numbers �0; : : : ; �k suh that x0 is an odd permutation and x1; : : : ; xk areeven permutations, Pnj=0 �j = 1 and �x = kXj=0�jxj: (10)Given �x, we may hoose a olletion X = fxj : j = 1; : : : ; kg of even permutations andthe expression (10) for �x suh that �0 is as small as possible.By transforming by an even permutation, as in Lemma 4, we an assume that x0 isthe permutation f12; 23; 34; 41g. Then x0 violates the instanes of (5) indiated below,where for eah inequality, written in the form x(C) � 2, we give the set C. (Note thatthere are really two kinds of inequalities here. The �rst four are equivalent under repeatedappliation of the permutation (1234) and the same is true of the other four.)C1 = f12; 13; 23; 24; 32; 34g;C2 = f41; 42; 12; 13; 21; 23g;C3 = f34; 31; 41; 42; 14; 12g;C4 = f23; 24; 34; 31; 43; 41g;C5 = f12; 14; 22; 23; 33; 34g;C6 = f41; 43; 11; 12; 22; 23g;C7 = f34; 32; 44; 41; 11; 12g;C8 = f23; 21; 33; 34; 44; 41g.We make the following observation: For any Ci, sine x0(Ci) > 2 but �x(Ci) � 2, itfollows that there exists some xj 2 X suh that xj(Ci) < 2. (For otherwise, 2 � �x(Ci) =�0x0(Ci) + 2(1 � �0) > 2, a ontradition.) For a given Ci, the list of all possible hoiesfor xj satisfying xj(Ci) < 2 is given below, and is easily veri�ed. Here, x K means thatx is the harateristi vetor of K.C1: x̂1 f11; 22; 33; 44g, x̂2  f14; 42; 21; 33g, x̂3  f14; 43; 31; 22g;C2: x̂1 f11; 22; 33; 44g, x̂3  f14; 43; 31; 22g, x̂4  f24; 43; 32; 11g;C3: x̂1 f11; 22; 33; 44g, x̂4  f24; 43; 32; 11g, x̂5  f13; 32; 21; 44g;C4: x̂1 f11; 22; 33; 44g, x̂5  f13; 32; 21; 44g, x̂2  f14; 42; 21; 33g;C5: x̂6 f13; 31; 24; 42g, x̂4  f24; 43; 32; 11g, x̂5  f13; 32; 21; 44g;C6: x̂6 f13; 31; 24; 42g, x̂5  f13; 32; 21; 44g, x̂2  f14; 42; 21; 33g;C7: x̂6 f13; 31; 24; 42g, x̂2  f14; 42; 21; 33g, x̂3  f14; 43; 31; 22g;C8: x̂6 f13; 31; 24; 42g, x̂3  f14; 43; 31; 22g, x̂4  f24; 43; 32; 11g.Note that the above observation implies that, for every i, X ontains at least one of thepermutations in the list for Ci. Now we onsider two ases.Case 1. Both x̂1 and x̂6 are in X . 10



Let y1; y2; y3; y4 be the permutations f12; 23; 31; 44g, f23; 34; 42; 11g, f13; 34; 41; 22g,and f12; 24; 41; 33g, respetively. Eah yi is an even permutation and2x0 + x̂1 + x̂6 = y1 + y2 + y3 + y4:Case 2. One of x̂1 or x̂6 is not in X .Then X must inlude both x̂3 and x̂5, or both x̂2 and x̂4. The two ases are symmet-rial, so we onsider the �rst. Let y1; y2; y3; y4 denote the permutations f12; 23; 31; 44g,f23; 32; 14; 41g, f12; 21; 34; 43g, and f13; 34; 41; 22g, respetively. Notie that eah yi is aneven permutation, and that2x0 + x̂3 + x̂5 = y1 + y2 + y3 + y4:In either ase, we an add a (suÆiently) small positive multiple of the derived equationto (10). The resulting expression for �x will have all of the required properties, but willhave a smaller �0, a ontradition. This ompletes the proof.Theorem 7 an be strengthened, as follows.Theorem 9 For n = 4, the system onsisting of any 7 of the 8 equations (1), (2), the16 inequalities (3), and the 48 distint inequalities (5), is a minimal system of linearinequalities desribing Q(n).Proof. It well known and easy to show that any set of 2n� 1 of the 2n equations (1), (2)implies all of them, but no smaller set does. Moreover, in view of Theorems 3, 5, and 6,eah of the inequalities in the system is faet-induing, and no two of them indue thesame faet. It follows that the desription is minimal.The Membership ProblemThe desription of Q(n) appears to be ompliated in general. Therefore, we an expetthat it may not be easy in general to test a given point in RE for membership in Q(n). Infat, Brualdi and Liu [4℄ onjetured that there does not exist a polynomial-time algorithmto solve this membership problem. Note that there is a onnetion between this seondonjeture and Conjeture 1. Namely, due to the polynomial-time solvability of linearprogramming, its truth would imply the truth of Conjeture 1. More preisely, it wouldimply the truth of a version of Conjeture 1 whih requires also that the lengths of theoeÆients in the linear inequalities be polynomially-bounded. It would also imply thatQ(n) annot be the projetion of a polytope T (n) in dimension f(n), suh that T (n) has apolynomial-size desription by linear inequalities. Whether suh a \ompat desription"of Q(n) exists, is unknown.While proving the non-existene of a polynomial-time algorithm for the membershipproblem seems hopeless, an easier question to answer may be whether the problem is NP-hard. To our knowledge, this remains open. Atually, there is some weak evidene pointing11



in the diretion of solvability of the membership problem, whih we now summarize. By afundamental result of Gr�otshel, Lov�asz, and Shrijver (see [5℄), the membership problemis solvable in polynomial time if there is a polynomial-time algorithm for the optimizationproblem: \Given  2 RE �nd the maximum of Tx over x 2 Q(n)." A speial ase of theoptimization problem is the ase in whih  is f0; 1g-valued, and we want to know whetherthe maximum is n.The latter problem an be stated more simply as follows: Given a digraph H = (V;E 0),determine whether E 0 ontains an even permutation. (E 0 is just fij 2 E : ij = 1g.) Thisproblem is equivalent to several other interesting problems, inluding that of determiningwhether a given digraph has a direted yle of even length, and determining whethera given bipartite graph has a PfaÆan orientation. These problems have been solved byRobertson, Seymour, and Thomas [10℄, based on a haraterization due independently tothemselves and MCuaig [8℄.This problem and the more general optimization problem above, are examples of pairsof problems that our ommonly in ombinatorial optimization. Suppose we are given afamily of subsets of a set E, suh as the family of even permutations of G = (V;E). Theoptimization problem is, given a weighting of the elements of E, to �nd the maximum,over all members of the family, of the total weight of that member. The feasibility problemis, given a subset of E, to deide whether it ontains a member of the family. If theoptimization problem is eÆiently solvable, then so is the feasibility problem. In fat,families for whih the onverse is known to fail are rather rare. (This may reet theurrent lak of knowledge more than the atual state of a�airs.) Sine the feasibilityproblem for the family of even permutations is solvable, there is at least some hope thatthe optimization problem over Q(n) is solvable, and hene that the membership problemis, too.Referenes1. J. von Below, \On a theorem of L. Mirsky on even doubly-stohasti matries",Disrete Math. 55 (1985), 311{312.2. G. Birkho�, \Tres observaiones sobre el algebra lineal", Universidad NaionaleTaum�an Revista 5 (1946), 147{151.3. S.C. Boyd and W.H. Cunningham, \Small travelling salesman polytopes", Math. ofOperations Researh 16 (1991), 259{271.4. R.A. Brualdi and B. Liu, \The polytope of even doubly stohasti matries", J.Combinatorial Theory, Series A 57 (1991), 243-253.5. M. Gr�otshel, L. Lov�asz, and A. Shrijver, Geometri Algorithms and CombinatorialOptimization, Springer, Berlin, 1988. 12
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