
A MODEL-THEORETIC COUNTERPART TO
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RAHIM MOOSA

Abstract. The notion of being Moishezon to a set of types, a natural strength-
ening of internality motivated by complex geometry, is introduced. Under the
hypothesis of Pillay’s [6] canonical base property, and using results of Chatzi-
dakis [2], it is shown that if a stationary type of finite U -rank at least two is
almost internal to a nonmodular minimal type and admits a diagonal section,
then it is Moishezon to the set of nonmodular minimal types. This result is
inspired by Campana’s [1] “first algebraicity criterion” in complex geometry.
Other related abstractions from complex geometry, including coreductions and
generating fibrations are also discussed.

1. Introduction

Compact complex manifolds can be viewed as first order structures in the language
where there are predicates for all complex-analytic relations. The corresponding
theory admits quantifier elimination and is of finite Morley rank. Many of the tech-
niques and approaches used by complex geometers in studying the bimeromorphic
structure of compact complex manifolds can be viewed as specialisations of the
methods of finite rank geometric stability theory. But this paper has to do with
the other direction; abstracting ideas from bimeromorphic geometry to stability
theories. The goal is to develop new model-theoretic tools that may be useful in
the study of other contexts, such as differential-algebraic geometry.

The general model-theoretic theme that we are interested in is the following:
Given a finite rank stationary type p(x) in a stable theory T , how does p relate
to the nonmodular minimal types of T? If the Zilber trichotomy holds in T (as
it does in the theory of compact complex manifolds) then a nonmodular minimal
type corresponds to algebraic geometry over an algebraically closed field, and so
one is trying to quantify how much of an expansion of algebraic geometry the type
p(x) involves. In the different theories the expansion from algebraic geometry is in
different directions: the theory of compact complex manifolds adds meromorphic
structure while the theory of differentially closed fields in characteristic zero, or
separably closed fields in positive characteristic, adds (Hasse-Schmidt) differential-
algebraic structure.

The notions appearing in this paper were originally developed to prove, under
suitable hypotheses on the theory, that every finite rank type has a minimum ex-
tension that is internal to the set of nonmodular minimal types. The difference in
rank then, between the type and this minimum extension, would be a new way to
quantify how far the type is from the “algebraic” part of that theory. In complex
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geometry such minimum extensions, called algebraic coreductions, have been known
to exist since the early nineteen eighties (due to Campana [1]). In its first form
this paper was devoted to developing the model-theoretic machinery that would
allow the complex-geometric constructions to go through in a wide class of stable
theories. As it turned out however, around the same time, Chatzidakis [2] found a
much more direct proof of this theorem using milder (but similar) assumptions on
the theory. Nevertheless, we feel that some of the ideas and arguments that were
extracted and abstracted from complex geometry may be of independent interest
and may have other applications. We therefore present them here.

The paper is laid out as follows: In section 2 we introduce a strengthening of
internality modelled after the complex-geometric notion of a Moishezon morphism.
In section 3, under the assumption that the theory admits the canonical base prop-
erty (a stability-theoretic condition that is true of compact complex manifolds [6]
and differentially closed fields [7]), we give a criterion for when a finite rank type is
Moishezon to the set of nonmodular minimals. We rely heavily here on results of
Chatzidakis [2], without which we would have had to assume an apparently stronger
(but a posteriori equivalent) property introduced by the author and Pillay in [5].
Much of the work in this section involves pushing the techniques of [5] as far as they
will go. In any case, our criterion can be viewed as a model-theoretic counterpart
of a very special case of Campana’s “first algebraicity criterion” from [1]. Finally,
in section 4, we discuss the connection to the existence of coreductions, a problem
which we also reformulate in terms of the generating families that appeared in [5].

We work throughout in M
eq

where M is a sufficiently saturated model of a
complete stable theory T . All parameter sets are assumed to be of cardinality less
than the cardinality of M , and all tuples a, b, . . . will be assumed to be possibly
infinite tuples of length strictly less than the cardinality of M . We will only be
concerned with precision up to interalgebraicity. In particular, following [5], by the
canonical base of a stationary type p(x) ∈ S(A), which we will denote by Cb(p), we
will mean (an enumeration of) the algebraic closure of A0, where A0 is the smallest
definably closed subset of dcl(A) over which p does not fork and the restriction of
p to which is stationary.

2. Moishezon: between internal and algebraic

Suppose P is a set of partial types and p(x) ∈ S(B) is a stationary type. Here, and
throughout this paper, for any set C ⊇ B, p(x)|C denotes the nonforking extension
of p to C and PC denotes the set of partial types in P whose domains are contained
in C. We also use PM

C to denote the set of solutions
⋃

q∈PC

qM .

We will say that p(x) ∈ S(B) is P-algebraic if pM ⊆ acl
(
BPM

B

)
. Recall that a

stationary type p(x) ∈ S(B) is almost P-internal if there is some C ⊇ B such that
p(x)|C is P-algebraic. We wish to introduce a condition that lies strictly in between
P-algebraicity and almost P-internality. To motivate our definition we turn to the
model theory of compact complex manifolds.

Let A be the many-sorted first order structure where there is a sort for every
reduced and irreducible complex-analytic space and where the basic predicates are
the complex-analytic subsets of cartesian of sorts. The theory of this structure,
denoted by CCM, admits quantifier elimimination and is, sort by sort, of finite
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Morely rank. A distinguished sort in A is the projective line P. The complex field
is definable on this sort, and in fact the induced structure on P is bi-interpretable
with the pure field structure on the complex numbers.

Working in a saturated elementary extension of A, let us consider what it means
for a stationary type p(x) = stp(a/b) to be P-algebraic or almost P-internal. (Here a
and b are assumed to be finite tuples.) If we let X = loc(a, b) and Y = loc(b) – where
here loc denotes the locus, that is, the smallest complex-analytic set containing the
tuple in question – then, as is explained in section 2 of [3], p is the generic type of
a generic fibre of the fibration X → Y induced by the projection map. It follows
from results in that paper (see also the discussion in section 3 of [5]) that

• p is P-algebraic if and only if X meromorphically embeds into Y × Pn over
Y , for some n ≥ 0, and

• p is almost P-internal if and only if p is P-internal if and only if there is
a complex-analytic space over Y , Y ′ → Y , such that the fibred product
X ×Y Y ′ meromorphically embeds into Y ′ × Pn over Y ′, for some n ≥ 0.

But in complex geometry there is an intermediate notion that plays a much more
important role than either of the above two conditions: a surjective morphism
X → Y is Moishezon if X meromorphically embeds into P(F) over Y , where F
is a coherent analytic sheaf on Y and P(F) denotes the projective linear space
associated to F . If p is P-algebraic then X → Y is seen to be Moishezon by taking
F to be the free sheaf On

Y . The converse fails because not every projective linear
space splits. On the other hand, as every projective linear space does split after
base change, Moishezon-ness of X → Y implies that p is almost P-internal. The
converse of this implication also fails: the results of [3] show that if dim(a/b) = 1
then p is P-internal, but there exist non-Moishezon fibrations of dimension one, for
example of Hopf surfaces. Hence Moishezon-ness of X → Y lies strictly in between
P-algebraicity and almost P-internality of p.

Since we do not as yet see how to formulate the abstract analogue of a projective
linear space, we focus instead on the following properties of Moishezon fibrations:

(1) The restriction of a Moishezon morphism to a complex-analytic subspace
is again Moishezon.

(2) The composition of Moishezon morphisms is Moishezon.
The following definition in the general stable setting extracts, almost literally, the
model-theoretic content of these properties.

Definition 2.1. Suppose p(x) ∈ S(Ab) is a stationary type and P is an AutA(M)-
invariant set of partial types. We will say that p(x) is P-Moishezon over A if
whenever a |= p(x) and c is such that stp(b/Ac) is almost P-internal, then stp(a/Ac)
is almost P-internal.

Note that to verify P-Moishezon-ness it suffices to prove that for some a |= p(x),
whenever c is such that stp(b/Ac) is almost P-internal, then stp(a/Ac) is also.

Remark 2.2. This is a somewhat tentative definition. For one thing, it is a variant
of a condition that was implicitly considered by Pillay and the author in [5]:

(∗) Whenever a |= p(x), c is such that stp(b/Ac) is almost P-internal, and
a |̂

Ab
c, then stp(ab/Ac) is almost P-internal.

Note that since internality is preserved by concatenation, P-Moishezon-ness is a
strengthening of (∗). Even so, it is not strong enough to precisely capture the
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complex-geometric notion. While the generic type of a Moishezon morphism in
CCM is P-Moishezon (this is Example 2.3 below), not all P-Moishezon types arise
in that way: Suppose Y is a non-algebraic strongly minimal compact complex
manifold f : X → Y is a fibration with dim(X) = dim(Y )+ 1. Then f need not be
Moishezon, but the generic type of f will be P-Moishezon. Indeed, if a is generic in
X then tp

(
a/f(a)

)
is P-internal (by one-dimensionality, see [3]), and as the only

P-internal extensions of tp
(
f(a)

)
are algebraic extensions, tp

(
a/f(a)

)
is in fact

P-Moishezon.

Example 2.3. Working in CCM, suppose X and Y are irreducible compact com-
plex spaces, and f : X → Y is a Moishezon morphism. If a ∈ X is generic, then
stp

(
a/f(a)

)
is P-Moishezon over ∅.

Proof. Let b := f(a) and suppose stp(b/c) is P-internal. (Recall that in CCM,
almost internality and internality coincide.) Let U := loc(a, b, c), V := loc(b, c),
and W := loc(c). Then, as stp(bc/c) is P-internal, there exists W ′ → W such that
V ×W W ′ → W ′ meromorphically embeds into W ′ × Pn over W ′. In particular,
V ×W W ′ → W ′ is Moishezon.

On the other hand, since f is Moishezon, so is Γ(f) → Y , where Γ(f) = loc(a, b)
is the graph of f . Moishezon morphisms are preserved by base change. Hence
Γ(f)×Y V → V is Moishezon. Note that Y = loc(b). As U is contained in Γ(f)×Y V
over V , U → V is also Moishezon. Hence U×V (V ×W W ′) = U×W W ′ → V ×W W ′

is Moishezon.
The composition of Moishezon morphisms is Moishezon. So U ×W W ′ → W ′

is Moishezon. Hence there exists W ′′ → W ′ such that U ×W W ′′ → W ′′ mero-
morphically embeds in W ′′ × Pm over W ′′ for some m. It follows that the generic
type of U → W , which is stp(ab/c), is P-internal. Hence, stp(a/c) is P-internal, as
desired. �

The following properties of P-Moishezon-ness are immediate consequences of the
of the definitions.

Proposition 2.4. Suppose p(x) ∈ S(Ab) is stationary and P is an AutA(M)-
invariant set of partial types.

(a) If p is PA-algebraic then it is P-Moishezon over A. In particular, if p is
almost PA-internal then some nonforking extension of p is P-Moishezon
over A.1

(b) If p is P-Moishezon over A then it is almost P-internal.
(c) If p � A is stationary and almost P-internal then p is P-Moishezon over A.
(d) If p is P-Moishezon over A then every extension of p is also.
(e) If p is P-Moishezon over A and a′ ∈ acl(Aba) for some a |= p(x), then

stp(a′/Ab) is P-Moishezon over A.
(f) If stp(a/Ab) and stp(a′/Ab) are P-Moishezon over A, then so is stp(aa′/Ab).
(g) If stp(a/Ab) and stp(b/Ac) are P-Moishezon over A, then so is stp(a/Ac).
(h) If stp(a/Abc) is P-Moishezon over A then it is P-Moishezon over Ab.

Proof. For part (a) suppose stp(b/Ac) is almost P-internal. So there exists C ⊇ Ac

such that b |̂
Ac

C and b ∈ acl
(
CPM

C

)
. Let a |= p(x)|Cb. Then a |̂

Ac
C and, since

1Note that, unlike almost P-internality, having a P-Moishezon nonforking extension does not
imply being P-Moishezon.
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pM ⊆ acl
(
AbPM

A

)
, we have a ∈ acl

(
CPM

C

)
. So stp(a/Ac) is almost P-internal.

Hence p(x) = tp(a/Ab) is P-Moishezon over A.
In particular, if p is almost PA-internal then from some b′ ⊇ b, the nonforking

extension q(x) := p(x)|Ab′ is PA-algebraic, and hence P-Moishezon over A.
For part (b) just take c = b in the definition of P-Moishezon.
Part (c). Suppose p � A is stationary and almost P-internal. Then every ex-

tension of p � A is almost P-internal. In particular stp(a/Ac) is almost P-internal
for any a |= p(x) and any c such that stp(b/Ac) is almost P-internal. That is,
p(x) = tp(a/Ab) is P-Moishezon over A.

Part (d). Suppose q ∈ S(Ab′) is an extension of p, where b′ ⊇ b. Suppose
stp(b′/Ac) is P-internal and let a |= q(x). Then a |= p(x) and stp(b/Ac) is P-
internal, so that stp(a/Ac) is almost P-internal, as desired.

Part (e). If stp(b/Ac) is almost P-internal then by the P-Moishezon-ness of
stp(a/Ab) over A, stp(a/Ac) is also almost P-internal. So stp(ab/Ac) is almost
P-internal. Since a′ ∈ acl(Aba), stp(a′/Ac) is almost P-internal, as desired.

Part (f). If stp(b/Ac) is almost P-internal then by P-Moishezon-ness both
stp(a/Ac) and stp(a′/Ac) are almost P-internal. Hence, stp(aa′/Ac) is almost P-
internal, as desired.

Part (g). If stp(c/Ad) is almost P-internal then by the P-Moishezon-ness of
stp(b/Ac) over A, stp(b/Ad) is also almost P-internal. But then, by the P-Moishezon-
ness of stp(a/Ab) over A, stp(a/Ad) is almost P-internal, as desired.

Finally, to prove part (h), suppose stp(c/Abd) is almost P-internal. Then so is
stp(bc/Abd), and so, by the P-Moishezon-ness of stp(a/Abc), stp(a/Abd) is almost
P-internal, as desired. �

3. A criterion for being Moishezon to the set of
nonmodular minimal types

In this section we take P to be the set of all nonmodular minimal types. An
essential part of understanding the structure of finite-rank definable sets in a stable
theory is the task of determining whether a given type bears any relation to the set
of nomodular minimal types. For example, is it non-orthogonal to P? If so, is it
almost internal to P? In this section we are interested in the question: When is an
almost P-internal type actually P-Moishezon? The following algebraicity criterion
in complex geometry will serve as a template for us:

Theorem 3.1 (Campana [1], Théorem̀e 2). Suppose X is a compact complex space
of Kähler-type, and f : X → Y is a surjective morphism whose fibres are Moishe-
zon.2 If there exists an analytic subspace A ⊆ X such that f |A : A → Y is surjective
and Moishezon, then f is Moishezon. In particular, if f has a meromorphic section
then it is Moishezon.

Actually, we have stated the theorem here in a more general way than it appears
in [1] where Campana assumes in addition that Y is Moishezon and then concludes
that X is Moishezon. But the proof he gives there goes through word for word in
the relative setting. The model-theoretic significance of the Kähler assumption has
to do with saturation in an appropriate language, for details about which we refer
the reader to [4]. Let us only mention that if X is Kähler then generic type of f is

2Recall that a compact complex space A is Moishezon if the morphism f : A → {pt.} is
Moishezon. Equivalently, A is bimeromorphic to a projective algebraic variety.
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P-internal if and only if the general fibres of f are Moishezon. So the above theorem
is about passing from P-internality to Moishezon-ness. To find a model-theoretic
counterpart to this theorem (or more accurately, to the “in particular” clause) we
begin by approximating the notion of a section as follows.

Definition 3.2. Let us say that a complete stationary type p admits a diagonal
section if there exists a ∈ acl

(
dom(p)

)
such that a |= p �Cb(p).

Remark 3.3. Every stationary type has a nonforking extension that admits a
diagonal section: if a |= p(x) ∈ S(B) then the nonforking extension p|Ba admits
a diagonal section, namely a itself. This is analogous to the fact that for every
morphism X → Y , the diagonal map is a section to X ×Y X → X.

What one might hope for, at least in the finite U -rank setting, is that if p is
P-internal and admits a diagonal section then it is P-Moishezon (over the empty
set). We will in fact prove something like this in Theorem 3.7 below, but only under
the additional hypothesis of the “canonical base property,”, which we now discuss
in the following digression.

3.1. The canonical base property. Motivated by complex-geometric results due
to Campana and Fujiki from the nineteen eighties, Pillay [6] introduced the follow-
ing condition: T has the canonical base property (CBP) if whenever U(a/A) < ω
and b = Cb(a/Ab) then stp(b/Aa) is almost P-internal.3 The complex-geometric
results alluded to above more or less directly imply that CCM has the CBP. In [7]
Pillay and Ziegler show that differentially closed fields have the CBP. Indeed, no
stable theories have been shown to fail the CBP. Again motivated by the complex-
geometric situation, Pillay and the author introduced an apparent strengthening of
this condition in [5], which we called the uniform canonical base property (UCBP),
and which essentially says that whenever U(a/A) < ω and b = Cb(a/Ab) then
stp(b/Aa) is P-Moishezon. “Essentially” because we were working with a slightly
weaker variant of Moishezon-ness, namely condition (∗) of Remark 2.2. In any case,
we pointed out that CCM has the UCBP, and we asked whether or not the CBP
always implies the UCBP. Recently, Chatzidakis has shown that this is indeed the
case. In terms of Moishezon-ness, her theorem can be stated as follows:

Theorem 3.4 (Chatzidakis [2], Theorem 2.9). Suppose T has the CBP. If U(a/A) <
ω and b = Cb(a/Ab), then stp(b/Aa) is P-Moishezon over A.

One of the ingredients that goes into proving Theorem 3.4 is the following conse-
quence of the CBP, also due to Chatzidakis [2]: if U(a/A) < ω and b = Cb(a/Ab),
then tp

(
b/ acl(Aa) ∩ acl(Ab)

)
is almost P-internal. In [5] the author and Pillay

gave a more geometrically motivated proof of this fact (using the UCBP). Given
Theorem 3.4, one is tempted to ask whether or not tp

(
b/ acl(Aa) ∩ acl(Ab)

)
is in

fact P-Moishezon over A. While this is too much to ask, our arguments in [5] can
be stretched to give:

Lemma 3.5. Suppose the CBP holds for T , U(a/A) < ω, b = Cb(a/Ab) and
a = Cb(b/Aa). Then tp

(
b/ acl(Aa) ∩ acl(Ab)

)
| Aa is P-Moishezon over A.

3Here P is still the set of all nonmodular minimal types, but in fact, by the results of [2], it
changes nothing if we replace P by the set of all minimal types (see Remark 1.1(b) of [5]).
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Proof. While this is stronger than the statement of Proposition 4.4 in [5] (which
only concludes that tp

(
b/ acl(Aa)∩acl(Ab)

)
is almost P-internal), it actually follows

from the proof given there. Let d be such that Ad = acl(Aa) ∩ acl(Ab).
By Theorem 3.4, both stp(a/Ab) and stp(b/Aa) are P-Moishezon over A. Now,

recursively define a = a0, a1, . . . and b = b0, b1, . . . such that
(i) ai+1 |= stp(ai/Abi)|Abia
(ii) bi+1 |= stp(bi/Aai+1)|Aai+1b
(iii) stp(bi/Aa), stp(ai/Aa) are P-Moishezon over A.

This is done as follows. Suppose we have already defined a = a0, a1, . . . , ai and
b = b0, b1, . . . , bi. Note that by the induction hypothesis aibi |= stp(ab/A). Hence
stp(ai/Abi) is P-Moishezon over A. Let ai+1 |= stp(ai/Abi)|Abia. Then stp(ai+1/Abi)
is P-Moishezon over A. By the inductive hypothesis, stp(bi/Aa) is P-Moishezon
over A. So, by Proposition 2.4(h), stp(ai+1/Aa) is P-Moishezon over A. Next
let bi+1 |= stp(bi/Aai+1)|Aai+1b. As stp(b/Aa) is P-Moishezon over A, so is
stp(bi+1/Aai+1). We have just shown that stp(ai+1/Aa) is P-Moishezon over A,
and so we get, by Proposition 2.4(h) again, that stp(bi+1/Aa) is P-Moishezon over
A, as desired.

Having constructed these sequences, note that by (i) and (ii), acl(Aai)∩acl(Abi) =
acl(Aa) ∩ acl(Ab) = Ad and aibi |= stp(ab/Ad), for all i ≥ 0. Moreover, because of
finite U -rank, eventually,

a |̂
Ad

a`b`

for sufficiently large ` ≥ 0. Indeed, this is Lemma 2.2 of [5] – see in particular
the statement marked by (∗) in the proof of that Lemma. So tp(b`/Aa) is the
nonforking extension of tp(b/Ad), and it is P-Moishezon over A by (iii). �

We are interested in the following consequence for minimal canonical types.

Corollary 3.6. Suppose the CBP holds for T and U(a/A) < ω. If U(a/Ab) = 1,
b = Cb(a/Ab), and b /∈ acl(Aa), then tp

(
a/ acl(Aa)∩acl(Ab)

)
| Aa is P-Moishezon

over A.

Proof. Again, let d be such that Ad = acl(Aa) ∩ acl(Ab).
We first show that tp(b/Ad)|Aa is P-Moishezon over A. Let a′ = Cb(b/Aa). So

a′ ∈ acl(Aa). If a′ ∈ acl(Ab) then Cb(b/Aa) ⊆ Ad and hence b |̂
Ad

a. It follows
that tp(b/Ad)|Aa = tp(b/Aa). But by Theorem 3.4, tp(b/Aa) is P-Moishezon
over A and we are done. Hence we may assume that a′ /∈ acl(Ab). But then, as
U(a/Ab) = 1, a ∈ acl(Aba′). Since b |̂

Aa′ a, this implies that a ∈ acl(Aa′). Hence
a and a′ are interalgebraic over A. So a = Cb(b/Aa) also. Now Lemma 3.5 applies
and we have that tp(b/Ad)|Aa is P-Moishezon over A.

To prove the corollary, we let a1b1 |= tp(ab/Ad)|Aa and we show that tp(a1/Aa)
is P-Moishezon over A. Note that b /∈ acl(Aa) =⇒ b1 /∈ acl(Aa1) =⇒ b1 /∈
acl(Aa1a), where the last implication is because b1 |̂

Aa1
a. Hence there exists

b2 |= tp(b1/Aa1a) with b2 /∈ acl(Ab1). Let pb1 and pb2 be the conjugates of tp(a/Ab)
obtained by replacing b by b1 and b2 respectively. As b1 = Cb(pb1), the fact that
b2 /∈ acl(Ab1) means that pb1 ∪ pb2 must be a forking extension of pb1 . The latter
being of rank 1 implies that pb1 ∪ pb2 is algebraic. Since b1 and b2 have the same
type over Aa1 and a1 |= pb1 , we get that a1 |= pb2 also and so a1 ∈ acl(Ab1b2).
But tp(b1/Aa) = tp(b2/Aa) is the nonforking extension of tp(b/Ad) to Aa, and is
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thus P-Moishezon over A by the preceeding paragraph. Hence, by Proposition 2.4
parts (e) and (f), tp(a1/Aa) is P-Moishezon over A. �

We now return to the promised criterion for when an almost internal type is
in fact Moishezon. For the sake of convenience we restrict ourselves to finite rank
theories – though everything can be formulated so as to apply to finite rank types
in arbitrary stable theories (with the CBP).

Theorem 3.7. Suppose T is a finite U -rank theory with the CBP, and P is the set
of all nonmodular minimal types. Suppose p is a stationary type of U -rank at least
two that is almost internal to a nonmodular minimal type. If p admits a diagonal
section, then p is P-Moishezon over ∅.

In particular, every stationary type of rank at least two that is almost internal to a
nonmodular minimal type becomes P-Moishezon after taking a nonforking extension
to a realisation.

Proof. We begin by proving the “in particular” clause as a separate lemma.

Lemma 3.8. Suppose T is a finite U -rank theory with the CBP. Suppose c =
Cb(a/Ac) and stp(a/Ac) is of U -rank at least two and almost internal to a non-
modular minimal type. Then stp(a/Ac)|Aca is P-Moishezon over A.

Proof of Lemma 3.8. Replacing a by (a, c) we may also assume that a ∈ acl(Ac).
Since stp(a/Ac) is almost internal to a nonmodular minimal type, there exists c′ ⊇ c
such that stp(a/Ac′) is a stationary canonical type of U -rank 1 and acl(Aca) ∩
acl(Ac′) = acl(Ac). This is Lemma 5.4 of [5] and expresses the existence of a
“rich family of curves” on any U -rank at least two type that is almost internal to
a nonmodular minimal type. Note that c′ /∈ acl(Aa): indeed, if it were, then we
would have c′ ∈ acl(Ac), contradicting the fact that U(a/Ac) > 1 while U(a/Ac′) =
1. Now, by Corollary 3.6 applied to stp(a/Ac′), we have that stp

(
a/ acl(Aa) ∩

acl(Ac′)
)
|Aa is P-Moishezon over A. But acl(Aa)∩acl(Ac′) = acl(Aca)∩acl(Ac′) =

acl(Ac). Hence stp(a/Ac)|Aa is P-Moishezon over A, as desired. �

Now suppose p is a stationary type almost internal to a nonmodular minimal
type and admitting a diagonal section. Let c = Cb(p). Recall that p admitting a
diagonal section means that there exists a ∈ acl

(
dom(p)

)
such that tp(a/c) = p �c.

Note that p, or rather its unique extension to acl
(
dom(p)

)
, is an extension of

tp(a/c)|ca. Hence it suffices to show that tp(a/c)|ca is P-Moishezon over ∅. But
since p is a nonforking extension of tp(a/c), the latter is also almost internal to a
nonmodular minimal type (the same one). So we can apply Lemma 3.8 with A = ∅
to conclude that tp(a/c)|ca is P-Moishezon over ∅, as desired. �

Note that Theorem 3.7 only abstracts a special case of the “in particular” clause
of Campana’s algebraicity criterion (Theorem 3.1), and that it is not even clear how
to formulate a more complete model-theortic counterpart of that result. It may be
that the Zariski-type structures of Hrushovski-Zilber, where it is possible to talk
about specialisations, offer the right context in which to work this out.

4. Coreductions

As was mentioned in the introduction, the original intention for developing a notion
of Moishezon-ness in the abstract stable setting was to prove that under certain
assumptions on the theory (namely UCBP), for all a and A there exists a minimum
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algebraically closed set A ⊆ B ⊆ acl(Aa) such that stp(a/B) is almost internal to
the set of nomodular minimal types. As it turned out, Chatzidakis [2], employing
even weaker assumptions (simply CBP), found a much more direct proof of this
intended application.4 In this final section we discuss Chatzidakis’ result from the
point of view of known results in complex geometry. Even though it was not in the
end necessary, we also explain how Moishezon-ness is related to these issues.

Given an irreducible compact complex space X, one of the first constructions
in bimeromorphic geometry is to consider its algebraic reduction, a holomorphic
surjection f : X → V where V is a projective algebraic variety and such that f
induces an isomorphism between the rational function field of V and the meromor-
phic function field of X. The algebraic reduction map satisfies a certain universal
property expressing that V is the maximum algebraic image of X. The model-
theoretic content of this is expressed in the following easy fact about finite rank
types in arbitrary stable theories: Suppose P is any AutA(M)-invariant set of par-
tial types and U(a/A) < ω. Then there exists b ∈ acl(Aa) such that stp(b/A) is
almost P-internal and whenever c ∈ acl(Aa) with stp(c/A) almost P-internal, then
c ∈ acl(Ab). Clearly this b is uniquely determined upto interalgebraicity over A,
and we could call it the P-reduction of a over A. Note that finding the P-reduction
is the first step in a P-analysis of stp(a/A). Up to bimeromorphic equivalence, al-
gebraic reductions in complex geometry are just P-reductions in the theory CCM.

Now, in [1], Campana considered a dual notion to algebraic reductions: maxi-
mum algebraic fibrations (or quotients). Somewhat loosely speaking, a meromor-
phic surjection f : X → Y is an algebraic coreduction of X if the general fibres
of f are Moishezon and if every compact complex-analytic family of Moishezon
subspaces of X is finer than the fibration induced by f . Campana proved that
algebraic coreductions of Kähler-type spaces exist. Campana’s proof used (and it
seems inspired) his “first algebraicity criterion”. This is what lead us to study
Moishezon types and to prove Theorem 3.7 above. In any case, the model-theoretic
content of algebraic coreductions is captured by the following definition:

Definition 4.1. Suppose P is a set of AutA(M)-invariant partial types. A P-
coreduction of a over A is a tuple b ∈ acl(Aa) such that stp(a/Ab) is almost P-
internal and whenever c ∈ acl(Aa) with stp(a/Ac) almost P-internal, then b ∈
acl(Ac).

But do coreductions exist? Unlike reductions, they are not an immediate con-
sequence of finite rank. Nevertheless, Chatzidakis proves – this is Theorem 2.8
of [2] – that if T has the CBP, P is an AutA(M)-invariant set of minimal types,
and U(a/A) < ω, then a P-coreduction of a over A exists. In particular this leads
to an attractive transfer of results from complex geometry to differential-algebraic
geometry: finite rank differential-algebraic varieties admit maximum fibrations by
subvarieties that are almost internal to the field of constants. This is a new and
potentially useful tool in the study of finite-rank differential algebraic varieties.

In order to prove the existence of coreductions for finite rank types it suffices
(and is necessary) to show that if b1, b2 ∈ acl(Aa) are such that stp(a/Ab1) and
stp(a/Ab2) are almost P-internal, then stp

(
a/ acl(Ab1) ∩ acl(Ab2)

)
is almost P-

internal. In the following proposition we prove a weaker version of this fact, but

4She then used this result to prove Theorem 3.4 above; that the CBP implies the UCBP.
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unconditionally (without the CBP). It serves as a good illustration of the power of
Moishezon-ness over internality.

Proposition 4.2. We do not assume the CBP. Suppose P is any AutA(M)-
invariant set of types and U(a/A) < ω. If b1, b2 ∈ acl(Aa) are such that stp(a/Abi)|Aa
is P-Moishezon over acl(Ab1)∩acl(Ab2) for i = 1, 2, then tp

(
a/ acl(Ab1)∩acl(Ab2)

)
is almost P-internal.

Remark 4.3. Note that in the case when the CBP holds and P is the set of
all nonmodular minimals, the hypothesis that tp(a/Abi)|Aa is P-Moishezon over
acl(Ab1)∩acl(Ab2) would follow by Theorem 3.7 from tp(a/Abi) being simply almost
internal to some nonmodular minimal type. But this does not give a new proof of
the existence of coreductions under CBP because Theorem 3.7 itself relied on the
existence of coreductions (to get UCBP from CBP).

Proof of Proposition 4.2. For the sake of notational convenience, let us rename b :=
b1 and c := b2. Passing to algebraic closures we assume that tp(a/Ab) and tp(a/Ac)
are stationary. Replacing A by acl(Ab)∩acl(Ac), we also assume that A = acl(Ab)∩
acl(Ac). We wish to show that tp(a/A) is almost P-internal.

Recursively define a = a0, a1, . . . , b = b0, b1, . . . , and c = c0, c1, . . . so that
(i) aibici |= tp(abc/A) for all i,
(ii) for i even, ai+1 |= tp(ai/Aci)|Acib and ci+1 = ci,
(iii) for i odd, ai+1 |= tp(ai/Abi)|Abib and bi+1 = bi, and
(iv) stp(ai/Ab) is almost P-internal for all i.

This is done as follows. Suppose that for even i we have defined a = a0, a1, . . . , ai,
b = b0, b1, . . . , bi, and c = c0, c1, . . . , ci as desired. We first show how to define
ai+1, bi+1, ci+1. Let ai+1 |= tp(ai/Aci)|Aaib. (Note that ci ∈ acl(Aai).) Since
tp(a/Ac)|Aa is P-Moishezon over A by assumption, we get that tp(ai+1/Aai) =
tp(ai/Aci)|Aai is P-Moishezon over A. By (iv) then, stp(ai+1/Ab) is almost P-
internal. Set ci+1 := ci. Since ai+1ci+1 |= tp(aici/A) = tp(ac/A), there exists bi+1

such that ai+1bi+1ci+1 |= tp(abc/A).
We now construct ai+2bi+2ci+2 analogously. Let ai+2 |= tp(ai+1/Abi+1)Aai+1b.

Since tp(a/Ab)|Aa is P-Moishezon over A, tp(ai+2/Aai+1) = tp(ai+1/Abi+1)|Aai+1

is P-Moishezon over A. But we have just shown that stp(ai+1/Ab) is almost P-
internal. So stp(ai+2/Ab) is almost P-internal. Setting bi+2 := bi+1 we can find ci+2

such that ai+2bi+2ci+2 |= tp(abc/A). This completes the recursive construction.
We claim that for all i, U(ai+1/Ab) ≥ U(ai/Ab). Indeed, for i even,

U(ai+1/Ab) = U(ai+1ci+1/Ab) as ci+1 ∈ acl(Aai+1)
= U(ai+1ci/Ab) as ci+1 = ci

= U(ai+1/Abci) + U(ci/Ab)
= U(ai+1/Aci) + U(ci/Ab) as ai+1 |̂

Aci

b

= U(ai/Aci) + U(ci/Ab) as ai+1 |= tp(ai/Aci)
≥ U(ai/Abci) + U(ci/Ab)
= U(aici/Ab)
= U(ai/Ab)

The argument for i odd is analogous.
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Hence, eventually for some ` > 0, U(aj/Ab) = U(a`/Ab) for all j ≥ `. Let us
take ` to be even. Now,

U(a`+1b`+1/Ab) = U(a`+1/Ab) as b`+1 ∈ acl(Aa`+1)
= U(a`+2/Ab) by choice of `

= U(a`+2b`+1/Ab) as b`+1 = b`+2 ∈ acl(Aa`+2)
= U(a`+2/Abb`+1) + U(b`+1/Ab)
= U(a`+2/Ab`+1) + U(b`+1/Ab) as a`+2 |̂

Ab`+1

b

= U(a`+1/Ab`+1) + U(b`+1/Ab) as a`+2 |= tp(a`+1/Ab`+1).

On the other hand, U(a`+1b`+1/Ab) = U(a`+1/Abb`+1) + U(b`+1/Ab). It fol-
lows that U(a`+1/Abb`+1) = U(a`+1/Ab`+1), which means that b |̂

Ab`+1

a`+1. But

b |̂
Ac`+1

a`+1 by (ii). Hence, Cb(b/Aa`+1) ⊆ acl(Ab`+1) ∩ acl(Ac`+1) = A and

we have that b |̂
A

a`+1. So tp(a/A) = tp(a`+1/A) has a nonforking extension –

namely stp(a`+1/Ab)– that is almost P-internal. Hence tp(a/A) is itself almost
P-internal. �

4.1. Generating fibrations. In conclusion, let us relate some of these ideas to
the notion of “generating families” from [5]. By a fibration of a stationary type
p(x) = tp(a/A) we mean simply a stationary type q(x, y) = tp(a, b/A) such that
s(y) = tp(b/A) and qb := tp(a/Ab) are also stationary. The fibres of this fibration
are the types qb′ := q(x, b′) where b′ |= s(y). Given another realisation a′ |= p(x), we
say that a and a′ are q-connected if there exists a finite sequence a = a0, a1, . . . , a` =
a′ of realisations of p(x) and a sequence b = b0, b1, . . . , b`−1 of realisations of s(y)
such that ai and ai+1 both realise qbi(x) for all i = 0, . . . , `−1. We say that q(x, y)
generates p(x) if every (equivalently some) A-independent pair of realisations of
p(x) are q-connected. It turns out that in the finite U -rank context q generates p
if and only if acl(Aa) ∩ acl(Ab) = acl(A) (see Lemma 2.2 of [5]). The author and
Pillay obtained the following criterion for internality to a nomodular minimal type
(Theorem 1.3(b) of [5]): If T has the CBP and a finite rank type p(x) is generated
by a fibration whose fibres are almost internal to a nonmodular minimal type, then
p(x) is itself almost internal to that type.

We can extend these notions to pairs (or indeed finite collections) of fibrations.
Let us say that p(x) is generated by the pair of fibrations q1(x, y) = (a, b/A) and
q2(x, z) = tp(a, c/A) if for some (equivalently any) pair of A-independent real-
isations of p(x), a and a′, there exists a finite sequence of realisations of p(x),
a = a0, a1, . . . , a` = a′ such that each pair ai, ai+1 is either q1-connected or q2-
connected. Chatzidakis’ proof of the existence of coreductions more or less gives
the following internality criterion:

Theorem 4.4. Suppose T has the CBP, p(x) ∈ S(A) is a stationary finite rank
type, and P is any set of AutA(M)-invariant minimal types. If p is generated
by a pair of fibration whose fibres are almost P-internal, then p is itself almost
P-internal.

Sketch of proof. Suppose p(x) = tp(a/A) is generated by the fibrations q1(x, y) =
tp(a, b/A) and q2(x, z) = tp(a, c/A). Since tp(a/Aa), tp(a/Ab), and tp(a/Ac) are
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all almost P-internal, the existence of P-coreductions (Theorem 2.8 of [2]) implies
that tp

(
a/ acl(Aa) ∩ acl(Ab) ∩ acl(Ac)

)
is almost P-internal. But the fact that q1

and q2 generate p(x) implies that

acl(Aa) ∩ acl(Ab) ∩ acl(Ac) = A.

Indeed, arguing as in Lemma 2.2 of [5], it is not hard to show that there ex-
ists a finite sequence abc = a0b0c0, a1b1c1, . . . , anbncn such that stp(aibici/A) =
stp(ai+1bi+1ci+1/A) and either bi = bi+1 or ci = ci+1, for all i = 0, . . . , n − 1, and
an is independent of a over A. Hence acl(Aa) ∩ acl(Ab) ∩ acl(Ac) = acl(Aan) ∩
acl(Abn) ∩ acl(Acn), and so acl(Aa) ∩ acl(Ab) ∩ acl(Ac) ⊆ acl(Aa) ∩ acl(Aan) = A.
Thus, p(x) = tp(a/A) is almost P-internal. �

Proposition 4.2 can also be understood in these terms. Loosely speaking, it says
that if a finite rank stationary type over A is generated by a pair of fibrations
whose fibres satisfy a certain strengthening of almost P-internality, where P here
is any AutA(M)-invariant set of partial types, then the type itself is almost P-
internal. The precise strengthening of internality that we require of the fibres is
that a nonforking extension to a realisation is P-Moishezon over A.
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