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Abstract. A hypothesis is introduced under which a compact complex an-

alytic space, X, viewed as a structure in the language of analytic sets, is
essentially saturated. It is shown that this condition is met exactly when the

irreducible components of the restricted Douady spaces of all the cartesian

powers of X are compact. Some implications of saturation on Kähler-type
spaces, which by a theorem of Fujiki meet the above condition, are discussed.

In particular, one obatins a model-theoretic proof of the fact that relative

algebraic reductions exist in the class of Kähler-type spaces.

1. Introduction

Recall that a subset of a complex analytic space, A ⊆ X, is analytic if for all
x ∈ X there are an open neighbourhood U of x, and finitely many holomorphic
functions on U , f1, . . . , fm, such that A∩U is the set of common zeros of f1, . . . , fm.
Here is the starting point for the model theory of compact complex manifolds.

Fact 1.1. Suppose X is a reduced and irreducible compact complex analytic space.
Let A(X) be the structure whose universe is X and where there is a predicate for
each analytic subset of each cartesian power of X. Then A(X) satisfies:

(a) Quantifier elimination. Every definable set is a finite boolean combination
of analytic sets ( Lojasiewicz [20], Zilber [24]).

(b) ω1-Compactness. The intersection of any countable collection of definable
sets is non-empty as long as every finite subcollection has non-empty inter-
section (Zilber [24]).

(c) Finite Morley rank. Every definable set has finite Morley rank; the Morley
rank of an analytic set is bounded by its complex dimension (Zilber [24]).

As every point is analytic, A(X) is not ω-saturated whenever X is infinite; that
is, there will always be collections of formulae over finitely many parameters that
are finitely realisable in A(X) but not simultaneously realised. On the other hand,
an ω1-compact structure in a countable language is ω1-saturated. One is lead to
ask whether in some cases the lack of saturation is only a syntactic deficiency.
This is indeed so for complex projective spaces: a consequence of Chow’s theorem
(and quantifier elimination) is that every set definable in A(Pm(C)) is already
definable with parameters in the reduct where there are only predicates for algebraic
subvarieties over Q. The latter structure is saturated.

In this paper we introduce a condition on compact complex analytic spaces, that
of being essentially saturated (Section 2), which captures the situation described
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above; namely, when it is a redundancy in the language of analytic sets that is
responsible for the failure of saturation. Essential saturation is quite naturally
related to the universal flat family of compact analytic subsets of a complex analytic
space, constructed by Douady [6]. We show that our condition is met by X if and
only if the irreducible components of the restricted Douady spaces of Xn, for each
n > 0, are compact (Section 3). In particular, by a theorem of Fujiki [8], Kähler-
type spaces are essentially saturated. This class of compact complex analytic spaces
is susceptible to many of the methods of algebraic geometry and the problem of their
bimeromorphic classification has been studied extensively. These methods have a
strong model-theoretic flavour (especially [11]), and it seems to us that essential
saturation is partially responsible for this. Some model theory of Kähler-type spaces
is discussed in Section 4, where we show that the class of all such spaces, viewed
as a (many-sorted) structure in a canonical language given by the Douady spaces,
eliminates imaginaries. As a consequence of the uniformity of definable families
given by essential saturation, we obtain a model-theoretic proof of a theorem of
Campana [4] and Fujiki [12]: relative algebraic reductions for fibre spaces in the
class of Kähler-type spaces exist.

We have also taken this opportunity to include two related results in the appen-
dix. The first is an observation of Anand Pillay’s, that has not appeared in print
(and that we require in order to avoid assuming the Continuum Hypothesis), which
gives a sufficient condition for saturation in finite U -rank theories. Secondly, we
provide the details to Anand Pillay’s sketch from [22] describing how elimination of
imaginaries for the class of all compact complex analytic spaces, viewed as a (many-
sorted) structure in the language of analytic sets, should follow from a theorem of
Grauert’s on meromorphic equivalence relations [14].

Here are some conventions we will adhere to in this paper:
By a complex variety we mean a reduced and irreducible complex analytic space.1

If X is a reduced complex analytic space, an analytic set A ⊆ X is viewed as
a reduced analytic space in its own right. By the Zariski topology on X we mean
the topology whose closed sets are the analytic sets. If X is compact then every
analytic set has only finitely many irreducible components and the Zariski topology
is noetherian.

A holomorphic map between compact complex varieties f : X → Y is a modifica-
tion if there exist proper analytic subsets A ⊆ X and B ⊆ Y such that f restricts to
a biholomorphic map from (X \A) to (Y \B). By a meromorphic map from X to Y
we will mean a multivalued map (written g : X → Y ) whose graph, Γ(g) ⊆ X × Y ,
is an irreducible analytic set such that the first co-ordinate projection restricts to
a modification Γ(g)→ X. Off a proper analytic set g is a well-defined holomorphic
map to Y . A meromorphic map g : X → Y is surjective if the second co-ordinate
projection restricts to a surjection Γ(g)→ Y ; and it is bimeromorphic if Γ(g)→ Y
is also a modification.

We use Pm(C) (or just Pm) for projective m-space over the complex field, and
P(C)m (or just Pm) for the mth cartesian power of the projective line.

Definable means definable with parameters.

1While this may not be standard, we are following Fujiki [11] here.
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We suggest [7] for a modern introduction to the theory of complex analytic
spaces. An introduction to, and survey of, the model theory of compact com-
plex varieties can be found in [18], where some of the results included here were
announced.

This paper stems from a chapter of my PhD thesis [17] written for the University
of Illinois at Urbana-Champaign. I am grateful to Anand Pillay for his invaluable
supervision of my graduate studies, as well as for his comments on an earlier draft
of this paper. I also thank Dan Grayson for his helpful comments and suggestions.

2. Essential Saturation

As it is convenient to deal with all compact complex varieties at once, we will
consider the many-sorted structureA where there is a sort for each compact complex
variety, and where the language, L, consists of a predicate for each analytic subset
of a finite cartesian product of sorts. Not that here L and A are proper classes,
even though the usual convention in model theory is that structures and languages
are sets. The reader who is uncomfortable with this can remedy the situation
by admitting as sorts only one compact complex variety from each biholomorphic
equivalence class of compact complex varieties.

If X is a compact complex variety, then A(X) can be viewed as a reduct of A –
one throws away all sorts in A except for X, and all predicates in L that refer to
sorts other than X. Note that F ⊆ Xn is definable in A if and only if it is definable
in A(X) (by quantifier elimination for example).

Definition 2.1. Let X be a compact complex variety. A full countable language
for X is a countable sublanguage, L0 ⊂ L, such that for all n > 0, every analytic
subset of Xn is definable in A by an L0-formula with parameters from A. We say
that X admits a full countable language if there is a full countable language for X.

Remark 2.2. For us “definable” always means “definable with parameters”. While
this is vacuous for L-formulae (every potential parameter is itself ∅-definable), it
does play a role in the above definition. Namely, the predicates in L0 are permitted
to refer to other sorts, and the subsets of Xn defined by L0-formulae may involve
parameters from sorts other than X itself.

Despite the cautionary tone of the above remark, the following proposition en-
sures the intrinsic nature of Definition 2.1.

Proposition 2.3. Let X be a compact complex variety. The following conditions
are equivalent:

(a) X admits a full countable language.
(b) There exists a structure in a countable language, M, with underlying uni-

verse X, such that for all n > 0 and F ⊆ Xn, F is definable in A(X) if
and only if it is definable in M.

(c) There is a full countable language for X, L0, such that each predicate in
L0 corresponds to an analytic subset of a finite cartesian power of X.

Moreover, if this is the case and M is as in (b), then M is saturated.2

2A structure is “saturated” if it is κ-saturated for κ the cardinality of the universe.
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Proof. First assume that L0 is a full countable language for X. Let A0 be the
reduct of A to an L0-structure, consisting of the sort X together with all the other
sorts appearing in L0. Note that by finiteness of Morley rank, Th(A0) is stable.

Let φ(x, z) be any L0-formula where x is a tuple of variables belonging to the
sort X and z is a tuple of variables belonging to a cartesian product of sorts Z.
By uniform definablility of types in stable theories (see III.1.24 [1]), there exists
an L0-formula dφ(x, y), where y is now a tuple of variables also belonging to the
sort X, with the following property: for all b ∈ Z there exists c from X such that
dφ(x, c) is the φ-definition of the L0-type of b over X in A0. That is, for all a
from X, A0 |= dφ(a, c) iff A0 |= φ(a, b). So dφ(x, c), which is an L0-formula with
parameters from X, defines the same set as φ(x, b).

Let M be the structure whose universe is X and where there is a predicate for
each dφ(x, y) obtained in the above manner. The language of M is countable (as
L0 is countable). It follows from the construction that a subset of Xn is definable
in M if and only if it is definable in A0. As L0 is a full countable language for X,
and as A admits quantifier elimination, definability in A0 is in turn equivalent to
definability in A(X). We have shown that (a) implies (b).

For (b) implies (c), note that there are only countably many ∅-definable sets
in M, each of which, being definable in A(X), is a finite boolean combination of
analytic subsets of cartesian powers of X. Let L0 := {PAi : i ∈ I} be the countable
collection of predicates corresponding to these analytic sets. Then L0 is a full
countable language for X satisfying (c).

That (c) implies (a) is immediate.
Finally, suppose that X does admit a full countable language and that M is as

in part (b) of the propostion. Then M is ω1-compact (as A(X) is) in a countable
language, and hence is ω1-saturated. As the cardinality of X is the continuum
(assuming dimX > 0), what we actually need to show is thatM is 2ω-saturated. By
Proposition 5.1 and Corollary 5.4 of the appendix, it suffices to show that every non-
algebraic type over countably many parameters has continuum many realisations
in M. Suppose p is a non-algebraic n-type over countably many parameters. By
the countability of the language of M there are only countably many formulae in
p. By quantifier elimination in A(X), and the non-algebraicity of p, there is an
irreducible analytic set A ⊆ Xn of positive dimension, such that p is realised inM
by a countable intersection of non-empty Zariski open subsets of A. It follows, using
the fact that a proper analytic subset of A is nowhere dense, that the cardinality
of the set of realisations of p is the continuum. �

Proposition 2.3 justifies the following terminology: we will say that a compact
complex variety X is essentially saturated to mean that the equivalent conditions
of Proposition 2.3 are satisfied.

Example 2.4. Consider Pm(C). As mentioned in the introduction, if we take L0 to
be those predicates that correspond to algebraic subvarieties of cartesian powers of
Pm over Q, then L0 is a full countable language for A(Pm). The class of essentially
saturated compact complex varieties is clearly preserved under taking subvarieties,
and hence all projective varieties are essentially saturated. We will obtain many
more examples (and non-examples) in the next section, where we explore the con-
nection between full countable languages and the compactness of Douady spaces.
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We do not know whether cartesian products of essentially saturated compact
complex varieties are again essentially saturated. Nevertheless, we may extend
Definition 2.1 as follows: A pair of compact complex varieties {X,Y } is said to be
essentially saturated if for every n,m > 0, Xn × Y m is essentially saturated. Just
as in Propostion 2.3, the following are equivalent:

• {X,Y } is essentially saturated.
• There is a countable sublanguage, L0 ⊂ L, such that every analytic subset

of Xn × Y m is definable in A by an L0-formula with parameters from A.
• There is a 2-sorted structure M, in a countable language, whose sorts are
{X,Y }, and such that a subset of Xn × Y m is definable in M if and only
if it is definable in A.

Again, such an M will be a saturated structure. There is nothing special about
“two” here; one can do the same thing with any finite (or even countable) number
of compact complex varieties.

We end this section by pointing out that if we begin with an essentially saturated
compact complex variety, then we can add any projective variety as a sort, and
remain essentially saturated. In fact, we will restrict our attention to the projective
line P(C) (which suffices). But first a lemma:

Lemma 2.5. Suppose X is an essentially saturated compact complex variety, D
is a definable subset of some cartesian power of X, and g : D → Y is a surjec-
tive definable map onto a compact complex variety. Then {X,Y } is essentially
saturated.

Proof. Let M be a structure with universe X, in a countable language, that wit-
nesses the essential saturation of X. Let MY be the structure obtained from M
by adding a sort for Y , as well as a predicate for the graph of g (note that D is
already definable in M). The language of MY is still countable, and clearly every
set definable in MY is definable in A. On the other hand, suppose F ⊆ Xn × Y m
is definable in A. Let h : Xn ×Dm → Xn × Y m be the surjection id×gm. Then h
is definable in MY . Now, h−1(F ) ⊆ Xn ×Dm, is definable in A, and hence in M,
and hence in MY . But then, F = h(h−1(F )) is definable in MY . We have shown
that MY witnesses the essential saturation of {X,Y }. �

Proposition 2.6. If X is essentially saturated then so is {X,P(C)}.

Proof. Suppose that for all n,m > 0 and analytic A ⊆ Xn × Pm, A is the product
of an analytic set in Xn and an analytic set in Pm. Then we obtain the desired full
countable language for Xn×Pm by taking the union of the full countable languages
for X and P. Hence, we may assume that for some n,m > 0, there is a subvariety
A ⊂ Xn×Pm that is not the product of analytic sets in Xn and Pm. We show that
P is then the definable image of a subset of Xn. By Lemma 2.5, this will suffice.

Let p(x, y) be the generic type of A; the type saying that (x, y) is in A but
not in any proper subvariety. This type is consistent by the noetherianity of the
Zariski topology and complete by quantifier elimination. Let (a, b) |= p be a re-
alisation in some elementary extension, A′ of A.3 Note that Th(A(P)) is strongly
minimal and admits elimination of imaginaries (it is definably bi-interpretable with
Th(C,+,×, 0, 1)). Our assumption onA implies that b forks with a; the Morley rank

3A discussion of elementary extensions of A and how they relate to the geometry of A itself
can be found in [19].
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of tp(b/a) is strictly less than that of tp(b). We obtain a generic tuple (b1, . . . , br)
of Pr in A′, such that br ∈ acl(b1, . . . , br−1, a). Elimination of imaginaries for
Th(A(P)) allows us to replace br with an element c in A′ such that (b1, . . . , br−1, c)
is still a generic of Pr, but now c ∈ dcl(b1, . . . , br−1, a). Let b := (b1, . . . , br−1), and
let fb : Xn(A′) → P(C)(A′) be a partial b-definable map witnessing c ∈ dcl(b, a).

The genericity of (b, c) in Pr, and strong minimality, implies that there is a subset
Db ⊆ Xn(A′), definable over b, such that fb(Db) is cofinite in P(C)(A′). By transfer
back to the standard model, some cofinite subset of P(C) is the definable image of
a definable subset of Xn. Hence all of P(C) is the definable image of a subset of
Xn, as desired. �

3. Douady Spaces

Let us introduce some conventions regarding the fibres of a holomorphic map.
Suppose f : G → S is a surjective holomorphic map between complex analytic
spaces. At the level of points we can view this as a family of analytic subsets of G
parametrised by S: each point s ∈ S gives rise to the analytic set Gs := f−1(s) ⊆ G.
If G is given as an analytic subspace of S × X, for some other complex analytic
space X, and f is the co-ordinate projection, then we often identify Gs with the
corresponding analytic set in X, namely {x ∈ X : (s, x) ∈ G} – thereby viewing G
as a family of analytic subsets of X parametrised by S. On the other hand, we can
view f : G → S as a family of analytic subspaces of G: each s ∈ S gives rise to a
possibly non-reduced complex analytic space, {s} ×S G, whose underlying set can
be identified with Gs. We will refer to the analytic space {s} ×S G as the fibre (or
the sheaf-theoretic fibre); and to the analytic set Gs as the set-theoretic fibre. Note
that even when G and S are reduced, it is not necessarily the case that all the fibres
will be reduced; that is, the sheaf-theoretic fibres and the set-theoretic fibres may
not coincide. For example, if G is the subvariety of C×C2 given by x2− uy = 0 in
the co-ordinate variables (u, x, y), then the fibre of G above u = 0 is a double line
in C2; it is not reduced.

We recall the universal family for compact analytic subspaces of a given complex
analytic space, constructed by Douady in [6]. Let X be any complex analytic space
(possibly non-compact and non-reduced). Then there exists a complex analytic
space D = D(X) and an analytic subspace Z = Z(X) ⊆ D ×X such that:

(a) The projection Z → D is a flat and proper surjection.
(b) If S is a complex analytic space and G is an analytic subspace of S × X

that is flat and proper over S, then there exists a unique holomorphic map
g : S → D such that G ' S ×D Z canonically.

D(X) is called the Douady Space of X, Z(X) is called the universal family of X,
and g : S → D(X) as in (b) is called the Douady map associated to G → S. An
important fact, due to Fujiki [9], is that D(X) has only countably many irreducible
components. In the case that X is a projective variety, D(X) is the Hilbert scheme
of X. A more detailed discussion of Douady spaces can be found in [5].

By way of explanation let us point that the compact analytic subsets of X are in
bijective correspondence with the points in D(X) above which the fibre of Z(X)→
D(X) is reduced. Indeed, if A ⊆ X is a compact analytic set, then applying (b)
to S := {s} a 0-dimensional variety and G := S × A, gives us a holomorphic
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map g : {s} → D such that A “is” the fibre of Z → D above g(s). More precisely,
{s}×DZ (which is the sheaf-theoretic fibre of Z → D over g(s)) is isomorphic, under
the projection {s}×DZ → X, to A. As A is reduced, so is the fibre. In fact, by the
uniqueness of the Douady map, g(s) is the unique point in D such that: (1) the fibre
of Z → D above g(s) is reduced, and (2) A = {a ∈ X : (g(s), a) ∈ Z} = Zg(s). We
sometimes denote g(s) by [A], and refer to it as the Douady point of A. That this
injective association is bijective follows from the observation that for any d ∈ D,
Zd is compact (this is the properness of Z → D) and if {d} ×D Z is reduced then
d = [Zd].

We have been considering the reduced fibres of Z(X)→ D(X). The non-reduced
fibres correspond to compact subspaces of X equipped with non-reduced structure
sheaves. These cannot be entirely avoided (even when X is assumed to be reduced
and compact). Nevertheless, following Fujiki [8], we can avoid “most” of them by
restricting our attention to a certain subspace of the Douady space:

First recall that for any complex analytic space X, the reduction of X, Xred,
is the reduced complex analytic subspace of X obtained by quotienting out the
structure sheaf of X by its nilradical ideal sheaf.

Definition 3.1. Suppose X is a compact complex variety. Let D(X) be the sub-
space of D(X) that is obtained by taking the union of all those irreducible com-
ponents of D(X)red, Dα, such that for some d ∈ Dα, the (sheaf-theoretic) fibre of
Z(X) over d is reduced and pure-dimensional (i.e. the irreducible components of
Z(X)d have the same dimension). Let Z(X) ⊆ D(X) × X be the corresponding
subspace of Z(X) over D(X). We call D(X) the restricted Douady space of X, and
Z(X) the restricted universal family of X.

Remark 3.2. The above definition is justified by the following observations. Suppose
f : G → S is a proper and flat holomorphic surjection between complex analytic
spaces where S is reduced and irreducible. A theorem of Bănică [2] tells us that
if G is reduced then the set of points s ∈ S such that the (sheaf-theoretic) fibre
of G above s is reduced, is a non-empty Zariski open subset of S. Conversely, if
even one fibre of f is reduced and pure-dimensional, then G is also reduced and
pure-dimensional (see Lemma 3 of [10]). Flatness then implies that every fibre of
G → S is pure-dimensional (and of the same dimension). Now suppose Dα is an
irreducible component of D(X)red and let Zα := Dα×D(X)Z(X) ⊆ Dα×X be the
corresponding subspace of the universal family over Dα. The facts just discussed
imply that the following are equivalent:

• Dα is a component of the restricted Douady space, D(X),
• Zα is reduced and pure-dimensional,
• All the fibres of Zα → Dα are pure-dimensional of a fixed dimension, and

the set of points d ∈ Dα such that the (sheaf-theoretic) fibre of Zα above
d is reduced is a non-empty Zariski open subset of Dα.

The restricted Douady space is sufficiently rich for our purposes; the collection
of pure-dimensional compact analytic subsets of X are in bijective correspondence
with a dense Zariski open subset of D(X). Moreover, if S is a complex variety
and G ⊆ S ×X is a pure-dimensional analytic subset that is flat and proper over
S, then some fibre of G → S is reduced and pure-dimensional and so the Douady
map takes S to an irreducible component Dα of D(X). At the level of points, this
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means that g extends by identity to a map from G to Zα,

S ×X ⊇ G

��

g×id // Zα ⊆ Dα ×X

��
S

g // Dα

such that Gs = (Zα)g(s) for all s ∈ S. Roughly speaking, every flat family of
pure-dimensional analytic subsets of X lives in Z(X)→ D(X).

We now use Douady spaces to characterise those compact complex varieties that
admit a full countable language.

Theorem 3.3. A compact complex variety X is essentially saturated if and only if
for all n > 0, every irreducible component of D(Xn) is compact.

Proof. Suppose each irreducible component of D(Xn) is compact, and fix such a
component Dα. Then Dα is a sort in A. Let Zα be the universal family of Xn over
Dα. Then Zα is an analytic subset of Dα ×Xn, and hence a named predicate in
L. Let L0 be the sublanguage of L consisting of all relation symbols corresponding
to such Zα, as α and n vary. Since D(Xn) has only countably many components
for each n, L0 is countable. Every pure-dimensional analytic subset of Xn occurs
as a fibre of Z(Xn) → D(Xn). In particular, if A ⊆ Xn is an irreducible analytic
set then the Douady point of A, d := [A], lives in some Dα and A = (Zα)d. Hence
A is L0-definable (over d). It follows that every analytic set is L0-definable, and so
X admits a full countable language.

To prove the converse we need to understand families of analytic sets that are
definable in A. By a definable family of analytic subsets of Xn in A we mean a
subset F ⊆ B ×Xn where F and B are definable in A, the co-ordinate projection
F → B is surjective, and Fb := {x ∈ Xn : (b, x) ∈ F} is an analytic subset of
Xn for each b ∈ B. Such a family is analytic, if B is locally Zariski closed and
irreducible (i.e., B is a Zariski open subset of an irreducible analytic subset of some
cartesian product of sorts from A), and F is (relatively) Zariski closed in B ×Xn.
Note that in this case F and B inherit the structure of reduced complex analytic
spaces and F → B is a proper holomorphic surjection. An analytic family is flat if
F → B is flat.

Lemma 3.4. Suppose X is an essentially saturated compact complex variety. For
each n > 0, there are countably many definable flat analytic families of analytic
subsets of Xn in A, (Fi → Bi)i∈ω such that:

(i) for each i, every fibre of Fi → Bi is reduced,
(ii) every analytic subset of Xn occurs as a fibre of some Fi → Bi, and,
(iii) for each i, the Douady map associated to Fi → Bi, gi : Bi → D(Xn), is

definable in A. That is, if Bi denotes the Zariski closure of Bi and g(Bi)

denotes the Zariski closure of g(Bi) in D(Xn), then g(Bi) is compact and

gi extends to a meromorphic map Bi → gi(Bi).

Proof. The existence of a full countable language for X, together with quantifier
elimination, gives us, for each n > 0, countably many definable analytic families
of analytic subsets of Xn such that every analytic set appears as the set-theoretic
fibre of at least one of them. It suffices therefore, to show that for any such family
F → B there is a definable decomposition, B = B1 ∪ · · · ∪ Bm, such that the
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restriction of F to each Bj , FBj
:= F ∩ (Bj × X) → Bj , is analytic, flat, has all

reduced fibres, and satisfies the condition in part (iii) of the lemma (the associated
Douady map is definable). By induction on dimB this in turn reduces to showing
that there exists a non-empty Zariski open subset U ⊆ B such that FU → U has
only reduced fibres, is flat, and satisfies (iii).

As F → B is an analytic family, B is a Zariski open subset of a compact complex
variety B, and F is the intersection of an analytic set F ⊆ B ×Xn with B ×Xn.
Consider F → B, which is a holomorphic surjection between compact complex
varieties. Hironaka’s flattening theorem [15] provides a bimeromorphic copy of

F → B that is flat: there is a modification of compact complex varieties h : B̂ → B

and an irreducible analytic set F̂ in B̂×B F such that F̂ → B̂ is flat, and such that

F̂b = Fh(b) for all b in some non-empty Zariski open subset of B̂. In diagrams,

B ×Xn ⊇ F

��

F̂ ⊆ B̂ ×B (B ×Xn) = B̂ ×Xn

��

h×idoo

B B̂
hoo

As F̂ → B̂ is flat and F̂ is reduced, there is a non-empty Zariski open subset V ⊆ B̂
over which the fibres of F̂ → B̂ are reduced (Bănică [2]). Shrinking V further, we
may assume that h restricted to V is an isomorphism, its image is a non-empty

Zariski open set U ⊆ B, and F̂b = Fh(b) for all b ∈ V . Hence F̂V → V is isomorphic
to FU → U over h. So FU → U is flat and all its fibres are reduced. Moreover,

there is a Douady map B̂ → D(Xn) associated to F̂ → B̂. If we compose the

meromorphic map h−1 : B → B̂ with this Douady map B̂ → D(Xn), we obtain a
meromorphic map g : B → D(Xn). The uniqueness of Douady maps ensures that
g restricted to U is the Douady map associated to FU → U . We have shown that
FU → U satisfies condition (iii): the Zariski closure of g(U) in D(Xn) is compact

(it is the image of the compact B̂) and g : B → g(U) witnesses that the Douady
map associated to FU → U is definable in A. �

Now for the remaining direction of Theorem 3.3. Suppose X is an essentially
saturated compact complex variety. Fix n > 0. We need to show that every
irreducible component of D(Xn) is compact. Let (Fi → Bi)i∈ω be the collection of
those families given by Lemma 3.4 that have some pure-dimensional fibre. As that
fibre is also reduced (part of the lemma) the Douady map actually takes each Bi to
D(Xn), gi : Bi → D(Xn). Moreover, as every pure-dimensional analytic subset of

Xn must appear as a (reduced) fibre in one of these families,
⋃
i∈ω

gi(Bi) must cover

those points in D(Xn) over which Z(Xn) has a reduced fibre. Fix an irreducible
component, Dα, of D(Xn). There is a proper analytic set E ⊂ Dα such that the

fibres above Dα \E are reduced (see Remark 3.2). Hence, Dα \E ⊆
⋃
i∈ω

gi(Bi) and

so Dα = E∪
⋃
i∈ω

(gi(Bi)∩Dα). A consequence of Baire Category is that no complex

variety can be written as the countable union of proper analytic subsets. Hence
Dα = gi(Bi)∩Dα for some i ∈ ω. In fact, as gi(Bi) ⊂ D(Xn) is irreducible it must
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be that Dα = gi(Bi). In any case, gi(Bi) is compact by Lemma 3.4, and so Dα is
compact. This completes the proof of Theorem 3.3. �

Example 3.5. (Hopf surfaces) We obtain an example of a compact complex variety
that is not essentially saturated. Fix α a real number strictly between 0 and 1,

and let Γ ≤ GL(2,C) be the cyclic subgroup generated by

(
α 0
0 α

)
. Let W be the

analytic space C2 \ {(0, 0)}. We can view Γ as a group of analytic isomorphisms of
W generated by (z1, z2) 7→ (αz1, αz2). Then H := W/Γ, the quotient of W by the
action of Γ, is a two-dimensional compact complex manifold called a Hopf surface.
Fujiki has pointed out that D(H ×H) has a non-compact component. We sketch
the argument here as it is rather instructive (see [5]). Identify Aut(H) with the set
of points g ∈ D(H2) such that Z(H2)g is the graph of an analytic automorphism
of H. This makes Aut(H) into a Zariski open subset of D(H2) that inherits the
structure of a complex Lie group (under composition). Let G be the connected
component of the identity in Aut(H). That is, G := Aut(H) ∩ C, where C is the
irreducible component of D(H2) containing the Douady point of the diagonal in
H2. Assume that C is compact, and hence G is a definable group in A. Let S ≤ G
be the subgroup of elements that stabilise the image of both (1, 0) and (0, 1) in H.
Then S is definable. On the other hand, the automorphisms of H in G are exactly
those that are induced by linear transformations of C2 restricted to W . That is,
G is isomorphic to GL(2,C)/Γ. This identifies S with the group of matrices of the

form

(
αm 0
0 αn

)
, modulo Γ. But by quantifier elimination, no definable subset of

a compact complex variety can be countably infinite. Hence C is not compact. By
Theorem 3.3, a Hopf surface is not essentially saturated.

4. Kähler-type Varieties

In this section we describe a particularly relevant class of essentially saturated
compact complex varieties, and then describe an application of model-theoretic
methods to this class.

Suppose M is an n-dimensional complex manifold. Viewing M as a real 2n-
dimensional C∞ manifold, let TpM denote the real tangent space to M at p ∈M ,
and Jp : Tp → Tp the complex structure (Jp is an R-linear map such that J2

p = id).

Suppose ω ∈ Ω2(M) is a real symplectic 2-form; so for every p ∈ M , ωp induces a
non-degenerate alternating bilinear map Bp : TpM ×TpM → R, and dω = 0. Then
ω is said to be Kähler if for every p ∈M

• ωp is Jp-compatible: Bp(Jpv, Jpw) = Bp(v, w), and
• Qp given by Qp(v, w) := Bp(v, Jpw) is positive definite.

A complex manifold is Kähler if there exists a Kähler 2-form on M . In this case
p 7→ (Qp + iBp) defines a Hermitian metric on M . Indeed, a Kähler manifold can
be alternatively described as a complex manifold which admits a Hermitian metric
whose fundamental form of type (1, 1) is closed. Examples of compact Kähler
manifolds include projective manifolds and complex tori.

A compact complex variety is of Kähler-type if it is the holomorphic image of a
compact Kähler manifold (introduced by Fujiki in [8]). The class of Kähler-type
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varieties is preserved under meromorphic images, cartesian products, and subvari-
eties. The problem of classifying Kähler-type varieties has been studied extensively,
largely because many of the methods of algebraic geometry extend to this class (see
for example [11]). That Kähler-type varieties are also very meaningful from the
model-theoretic point of view is contained in the following fact:

Fact 4.1. If X is of Kähler-type then every irreducible component of D(X) is
compact (Fujiki [8]), and is itself of Kähler-type (Fujiki [13], Campana [3]).

In particular, every Kähler-type variety is essentially saturated.

Question 4.2. It is not known (to this author) whether every essentially saturated
variety is of Kähler-type. By Theorem 3.3, this is equivalent to asking: Can Kähler-
type varieties be characterised as those compact complex varieties all of whose carte-
sian powers have restricted Douady spaces whose components are compact? Note
that the reference to cartesian powers is necessary – if H is a Hopf surface then
D(H) does have compact components but D(H2) does not (see Example 3.5).

Fact 4.1 tells us more than essential saturation for each individual Kähler-type
variety, it allows us to work simultaneously with all Kähler-type varieties equipped
with canonical full countable languages:

Definition 4.3. Let C be the many-sorted structure where there is a sort for each
Kähler-type variety and where for each finite cartesian product of sorts, Y , and
each irreducible component Dα of D(Y ) (also of Kähler-type by Fact 4.1), there is
a predicate for Zα ⊆ Dα × Y , the corresponding subspace of the universal family
over Dα. We refer to this as the Douady language.

While the Douady language is not itself countable, for any given Kähler-type
variety X, those predicates in the Douady language that refer only to X – that is
the components Zα → Dα of Z(Xn)→ D(Xn) for all n ∈ N – form a full countable
language for X. In this way C provides a setting in which to work with all Kähler-
type varieties, equipped with full countable languages, simultaneously. That these
languages are “canonical” is expressed by the universality of Douady spaces.

We will show that Th(C) eliminates imaginaries (after naming parameters). This
is also true of Th(A) itself; a proof based on Pillay’s suggestion is included in the
appendix of this paper (Proposition 5.2 and Corollary 5.4). While elimination
of imaginaries for Th(C) could also be extracted from the proof of elimination of
imaginaries for Th(A) (though not just from the statement), the argument we
present below is more direct and exhibits some of the advantages of working in C.

Proposition 4.4. The elementary diagram of C eliminates imaginaries.

Proof. By the elementary diagram of C we mean Th(C, s : s ∈ C); the theory of
the structure obtained from C by naming every element. Suppose X is a Kähler-
type variety. Let {Xi : i ∈ ω} be the smallest collection of sorts of C containing
X that is closed under cartesian products and is closed under taking irreducible
components of restricted Douady spaces. Let C|X be the full reduct of C to the
sorts {Xi : i ∈ ω}. That is, for each finite cartesian product of the Xi’s, Y , and
each irreducible component Dα of D(Y ), there is a predicate for Zα ⊆ Dα×Y . Let
U(Y, α) ⊆ Dα be the set of points over which the fibres of Zα → Dα are reduced.
Then U(Y, α) is a non-empty Zariski open subset of Dα (see Remark 3.2); and
hence definable in C|X . Let S be a countable set of parameters over which all such
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U(Y, α) (as Y and α vary) are definable in C|X . Ranging over all X, the proposition
will follow from:

Lemma 4.5. Th(C|X , s : s ∈ S) eliminates imaginaries.

Proof. Note that (C|X , s : s ∈ S) is a saturated structure. Indeed, it is ω1-compact
in a countable language, and 2ω-saturation follows by 5.1 (as in 2.3). It suffices
therefore, to show that every definable set, F , has a code: there exists a tuple c
from C|X such that if σ is an automorphism of (C|X , s : s ∈ S), then σ(F ) = F if
and only if σ(c) = c.

Suppose Y is a finite cartesian product of sorts from C|X , and A ⊆ Y is a pure-
dimensional analytic set. Let a := [A] ∈ D(Y ) be the Douady point of A. Let Dα

be an irreducible component of D(Y ) such that a ∈ Dα. Now Zα ⊆ Dα × Y is
named by a predicate, and hence A = (Zα)a is definable over a in C|X . On the
other hand, if σ ∈ Aut(C|X , s : s ∈ S) and σ(A) = A, then (Zα)σ(a) = A. As σ fixes
U(Y, α), the sheaf-theoretic fibre of Zα above σ(a) is also reduced. So σ(a) is the
Douady point of A and σ(a) = a. All pure-dimensional analytic sets have codes.

Suppose B ⊆ Y is an analytic set with irreducible components A1, . . . , An. Let
ai be a code for Ai, and b a code for the finite (and hence pure-dimensional analytic)
set {a1, . . . , an}. Then b is a code for B. Also, if A is irreducible analytic, B ⊂ A
is a proper analytic subset, a is a code for A, and b is a code for B, then it is not
hard to see that ab is a code for A \ B. Finally, by quantifier elimination (in A)
every definable set F in C|X can be expressed irredundantly as a finite union of sets
of the form A \B as above. Each of these have codes. As before, the code for this
finite set of codes is a code for F . This completes the proof of the lemma. �

Ranging over all Kähler-type varieties X, Lemma 4.5 yields Proposition 4.4. �

Relative Algebraic Reductions

The purpose for considering essentially saturated compact complex varieties is
that under such hypotheses there is a natural (from the model-theoretic point of
view) notion of “generic point”; and hence of “generic member” of a definable family
of analytic sets. These notions of genericity often produce some interesting uniform
behaviour. For the remainder of this section we discuss one such example. Namely,
we will use model-theoretic methods to give a proof of the fact that relative algebraic
reductions exist for fibre spaces of Kähler-type varieties (Campana [4], Fujiki [12]).
Relative algebraic reductions played an important role in Fujiki’s analysis of the
structure of Kähler-type varieties in [11].

We begin by recalling some definitions. If f : X → Y is a meromorphic surjection
of compact complex varieties, then by a fibre of f we mean a fibre of its graph under
the co-ordinate projection Γ(f) → Y . Note that after a natural identification,
this coincides with the usual notion when f is holomorphic. We say that f is a
meromorphic fibre space if over a non-empty Zariski open subset of Y the fibres of f
are irreducible. We simply say that f is a fibre space if in addition f is holomorphic.

Suppose X is a compact complex variety. The meromorphic function field of X,
denoted by C(X), is a finitely generated extension of C whose transcendence degree
over C is bounded by the dimension of X. This transcendence degree is called the
algebraic dimension of X, and is denoted by a(X). A compact complex variety is
Moishezon if its dimension is equal to its algebraic dimension.
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An algebraic reduction of X is a meromorphic fibre space f : X → V , such that
V is a Moishezon variety and dimV = a(X). An algebraic reduction always exists.
We sketch a construction from [23]. Let V be a projective manifold whose rational
function field is C(X). Then dimV = a(X). Let C[P0, . . . Pn] be a homogeneous
co-ordinate ring for V such that f1 = P1

P0
, . . . , fn = Pn

P0
generate C(X). Viewing

f1, . . . , fn as meromorphic functions on X, we obtain an induced meromorphic
surjection f : X → V given by x 7→ (1 : f1(x) : · · · : fn(x)); such that f∗ : C(V )→
C(X) is an isomorphism. Now let h : M → Γ(f) be a resolution of the graph of
f , so M is a compact complex manifold and h is a modification. Let g : M → V
be the holomorphic map obtained by composing h with the co-ordinate projection
Γ(f) → V . Then g∗ : C(V ) → C(M) is an isomorphism. By considering a Stein
factorisation of g we see that the fibres of g must be connected and hence irreducible
(as M is smooth). It follows that the fibres of Γ(f)→ V are irreducible and f is a
meromorphic fibre space.

It follows from the above construction that X is Moishezon if and only if it is
bimeromorphic to a projective manifold. Moreover, any meromorphic surjection of
X onto a Moishezon variety factors meromorphically through an algebraic reduction
of X. Hence, up to bimeromorphic equivalence, algebraic reductions are unique.

Suppose f : X → Y is a fibre space. A relative algebraic reduction of f is a
commutative diagram:

X

f   @
@@

@@
@@

@
h // V

g
~~~~
~~
~~
~~

Y

where V is a compact complex variety, g : V → Y is a fibre space, h : X → V
is a meromorphic map over Y , and there is a countable intersection of non-empty
Zariski open subsets, Q ⊆ Y , such that for all q ∈ Q, hq : Xq → Vq is an algebraic
reduction of Xq. Note that while Q is not itself required to be Zariski open, it is
(by Baire category) a dense set of points in Y .

As mentioned earlier, Campana [4] and Fujiki [12] have shown that relative
algebraic reductions exist when X and Y are Kähler-type varieties. In fact they
show something somewhat stronger: a relative algebraic reduction can be found so
that Vq as above is a projective variety (rather than just bimeromorphic to one).
In any case, we give a model-theoretic explanation:

Proposition 4.6. Suppose f : X → Y is a fibre space of Kähler-type varieties.
Then a relative algebraic reduction of f exists.

Proof. Just as in the proof of Proposition 4.4, we let {Xi : i ∈ ω} be the smallest
collection of sorts from C containing X, Y , and P, that is closed under cartesian
products as well as taking irreducible components of restricted Douady spaces. Let
C◦ be the full reduct of C to these sorts: there is a predicate for each component
of the universal family of each cartesian product of the Xi’s. Moreover, let S be
a countable set of parameters such that if Dα is any irreducible component of the
restricted Douady space of some product of the Xi’s, and Uα ⊆ Dα is the (Zariski
open) set of points above which the universal family has a reduced fibre, then Uα
is definable in C◦ over S. Adding countably more elements to S we may assume
that S = acl(S) and that f : X → Y is defined over S.
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We will work in the structure (C◦, s : s ∈ S), which is saturated and eliminates
imaginaries (Lemma 4.5). Note that automorphisms of this structure preserve
properties such as being irreducible analytic or being Moishezon (it is for the latter
that we have included the sort P). In particular, the conjugate of an algebraic
reduction of X under an automorphism σ is an algebraic reduction of σ(X).

Let c ∈ Y be a generic point of Y over S: a realisation of the type saying x ∈ Y
but x /∈ A for any S-definable proper analytic set A ⊂ Y . Such a type is realised
in Y by saturation. We claim:

Lemma 4.7. There is an (S ∪ {c})-definable algebraic reduction of Xc in C◦.

Proof. LetXc →W be any algebraic reduction and Γ ⊆W×Xc its graph. Applying
Hironaka’s flattening theorem as in the proof of Lemma 3.4, there is a non-empty
Zariski open subset U ⊆ W such that ΓU → U is flat, has reduced fibres, and the
Douady map associated to ΓU → U extends to a meromorphic surjection from W
to an irreducible analytic set W ′ ⊆ D(Xc); which we denote by φ : W →W ′.

Moreover, since Γ is the graph of a meromorphic map from Xc to W , we may
assume, after shrinking U if necessary, that the fibres of Γ→W over U are distinct
as analytic subsets of Xc. It follows that the Douady map φ|U is injective, and
hence φ is a bimeromorphism. Letting Γ′ := Z(Xc)∩ (W ′×Xc) we have that φ× id
is a bimeromorphism from Γ to Γ′ that lifts φ. In diagrams,

W ′ ×Xc ⊇ Γ

��

φ×id // Γ′ ⊆W ′ ×Xc

��
W

φ // W ′

Hence Γ′ is also the graph of an algebraic reduction of Xc, h
′ : Xc →W ′.

There is a natural identification of D(Xc) with an analytic subspace of D(X)
(given by a Douady map). Under this identification, Z(Xc) is the restriction of
Z(X) to D(Xc). Hence for some irreducible component Dα of D(X), W ′ ⊆ Dα

and Γ′ = Zα ∩ (W ′ × X). As Dα is a sort of C◦, h′ : Xc → W ′ is a definable
algebraic reduction of Xc in C◦. We claim that h′ is (S ∪ {c})-definable.

Let σ be an automorphism of C◦ that fixes S∪{c} pointwise. Then σ(W ′) ⊆ Dα

and σ(Γ′) = Zα ∩ (σ(W ′) × X). On the other hand, σ(Γ′) ⊆ σ(W ′) × Xc is
the graph of another algebraic reduction h′σ : Xc → σ(W ′). The uniqueness of
algebraic reductions implies that there is a bimeromorphism m : W ′ → σ(W ′) such
that m ◦ h′ = h′σ. We have non-empty Zariski open sets A ⊆ W ′ and B ⊆ σ(W ′)
such that m : A → B is an isomorphism and for all a ∈ A, Γ′a = σ(Γ′)m(a). That
is, (Zα)a = (Zα)m(a) for all a ∈ A.

By our choice of S, σ fixes the (dense Zariski open) set of points in Dα above
which the fibres of Zα are reduced. Moreover, this set has a non-empty intersection
with W ′ (the fibres of ΓU → U are reduced). Hence it also has a non-empty
intersection with σ(W ′). We may therefore assume, after possibly shrinking A
further, that for each a ∈ A, the fibres of Zα over a and m(a) are reduced. So for
each a ∈ A, a is the Douady point of Γ′a = (Zα)a and m(a) is the Douady point
of σ(Γ′)m(a) = (Zα)m(a). The uniqueness of Douady points implies that m is the
identity and A = B. Taking Zariski closures, W ′ = σ(W ′) and so Γ′ = σ(Γ′). That
is, every automorphism of C◦ fixing S ∪ {c} pointwise fixes the graph of h′ setwise.
By saturation, h′ is (S ∪ {c})-definable, as desired. �
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Let h′ : Xc → W ′ be the (S ∪ {c})-definable algebraic reduction of Xc in C◦
obtained above. Let a ∈ Xc be generic in Xc over (S ∪ {c}) and b := h′(a). Let
V be the S-locus of (c, b): the smallest analytic set defined over S that contains
(c, b). Note that an irreducible component of V has finitely many S-conjugates and
hence (by saturation and elimination of imaginaries) is defined over acl(S). But
acl(S) = S and so V is irreducible. Let g : V → Y be the co-ordinate projection.
Note that Vc = W ′ since b is generic in W ′ over (S ∪ {c}). Moreover, as c ∈ Y
is generic over S, h′ : Xc → Vc extends to a meromorphic map h : X → V over
Y , such that hc = h′. Let Q ⊆ Y be the set of realisations of tp(c/S). If q ∈ Q
then by saturation q is an S-conjugate of c, and hence hq : Xq → Vq is an algebraic
reduction. Since tp(c/S) is the generic type of Y (and by quantifier elimination), Q
contains a countable intersection of non-empty Zariski open subsets of Y . Hence h is
a relative algebraic reduction of f . This completes the proof of Proposition 4.6. �

5. Appendix

The following sufficient condition for saturation was used in the proof of Propo-
sition 2.3 to avoid the Continuum Hypothesis. The argument presented below was
pointed out to the author by Anand Pillay and is related to the notion of “gross”
models from [16]. Notions from geometric stability theory are involved, for which
we suggest [21] as a general reference.

Proposition 5.1. Suppose L is a countable language and T is an L-theory such
that for all n ∈ ω every n-type in T is of finite U -rank. Suppose κ is an un-
countable cardinal and N is a model of T that satisfies the following strengthening
of ω1-saturation: every non-algebraic complete type in T eq over countably many
parameters from N eq has κ-many realisations in N eq. Then N is κ-saturated.

Proof. We work in a saturated elementary extension M of N . We need to show
that for every set B ⊂ N of cardinality less than κ, every complete type q(x) over
B has a realisation in N . We proceed by induction on the U -rank of q. This is
clear for the U -rank 0 case since every algebraic type is realised in N .

Suppose the U -rank of q is n + 1. We pass to M eq. Since acleq(B) ⊂ N eq, and
the cardinality of acleq(B) is also less than κ (as the language is countable), we
may assume that B = acleq(B).

There is a finite subset of B over which q does not fork. Taking its algebraic
closure in M eq, there is a countable set A ⊆ B, such that the restriction of q to
A, p(x), is stationary and q does not fork over A. In particular, q is the unique
nonforking extension of p to B. Any realisation of p in N that is independent from
B over A would thus produce the desired realisation of q in N .

As U(p) < ω, p is not orthogonal to some stationary U -rank 1 type in M eq.
That is, for some countable set C ⊂ M eq, containing A, there exist: a U -rank 1
type r(y) in M eq over C, a realisation b of r, and a realisation a of the nonforking
extension of p to C; such that a and b are dependent over C. By the ω1-saturation
of N , we can find C, a, and b in N eq. Increasing A (and B) by countably many
elements if necessary, we may assume that C = A. That is, a is a realisation of
p(x) in N , b is a realisation of r(y) in N eq, and a forks with b over A.

Let s(x, y) = tp(ab/A), let s′(x, y) be the nonforking extension of s to B, and
let r′(y) be the nonforking extension of r to B. Suppose a′b′ is a realisation of s′ in
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N eq. Then a′ realises p and is independent from B over A (as a′b′ is independent
from B over A). So a′ is a realisation of q in N , and we are done. It remains to
show that s′ is realised in N eq.

We first find a realisation of r′ in N eq. As r′ is the unique nonforking extension
of r to B, we need a realisation of r in N eq that is independent from B over A.
But since U(r) = 1, any realisation of r that is not algebraic over B, would be
independent from B over A. Since B = acleq(B), all we require is a realisation of r
in N eq that is not contained in B. But |B| < κ, and by assumption r has κ-many
realisations in N eq. Hence there must be some b′ from N eq that realises r′.

As a and b were dependent over A, s(x, b) is a forking extension of p to Ab.
Since b and b′ realise the same complete type over A (namely r(y)), s(x, b′) is a
forking extension of p to Ab′. Finally, s′(x, b′) extends s(x, b′) from Ab′ to Bb′. By
transitivity s′(x, b′) is a forking extension of p to Bb′. It follows that U(s′(x, b′)) <
U(p) = U(q) = n + 1. By induction, s′(x, b′) has a realisation in N , say a′. That
is, a′b′ is a realisation of s′ in N eq, as desired. �

Elimination of Imaginaries

In [22], Pillay sketches how Grauert’s theorem on meromorphic equivalence re-
lations from [14] can in principle be used to show that A admits elimination of
imaginaries. We provide the details of the argument here.

Suppose X is a compact complex manifold. A meromorphic equivalence relation
on X is an analytic set R ⊆ X ×X that contains the diagonal, is symmetric, and
such that there is a proper analytic set P ⊂ X such that,

(i) no irreducible component of R is contained in X × P ;
(ii) R◦ := R ∩ (X \ P )2 is an equivalence relation on X \ P ;

(iii) the dimensions of the R◦-classes in X \ P are constant; and,
(iv) the co-ordinate projections, R◦ → X \ P , are open maps.

We call P a degeneracy set for R.

Proposition 5.2. Suppose X is a compact complex manifold and E is a definable
equivalence relation on X. Then there exists a meromorphic equivalence relation R
on X, and a degeneracy set P for R, such that R agrees with E outside of P .

Proof. We have an irredundant expression E =
⋃n
i=0 Si \Qi, where for each i ≤ n,

Qi is a proper analytic subset of the irreducible analytic subset Si ⊆ X ×X. Since
E contains the diagonal, some Si must contain the diagonal and hence must project
onto X in both co-ordinates. After re-indexing {S0, . . . , Sn} we may assume that
for some 0 ≤ m ≤ n, Si projects onto X in both co-ordinates if and only if i ≤ m.

Let R =
⋃m
i=0 Si and S =

⋃n
i=0 Si. It is clear that R is an analytic set in

X×X that contains the diagonal. Since reflection across the diagonal is an analytic
isomorphism of X ×X, the symmetry of E implies that S is symmetric. Moreover,
since reflection preserves the property of projecting onto X in both co-ordinates, it
will permute {S0, . . . , Sm}. So R is symmetric. We will construct a proper analytic
subset of X, P , such that conditions (i)− (iv) hold and R agrees with E on X \P .
First of all, notice that the only components of S that are not contained in R are
those that project (in one or both directions) onto a proper Zariski closed subset of
X. Letting P ′ be the union of these projections, we get that P ′ is a proper analytic
set in X and that R and S agree on (X \ P ′)2.
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Let π : X ×X → X be the second co-ordinate projection map. Let U ⊆ X \ P ′
be a non-empty Zariski open subset such that for each i ≤ m, the restriction of
π : Si → X to U , (Si)U → U , is open (see [7]). Shrinking U further, we may assume
that either Qi ∩ (X × U) = ∅, or (Qi)U → U is also open. In particular we have
that for all i ≤ m, the fibres of (Si)U → U and (Qi)U → U are pure-dimensional
and of constant dimension.

Let P := X \ U and R◦ := R ∩ (U × U). As P is a proper analytic set in
X, no component of R is contained in X × P . Moreover, π restricts to an open
map R◦ → U , whose fibres are of constant dimension. While we have only been
considering the second co-ordinate projection, by symmetry, this is also true of the
other co-ordinate projection. All that remains to be shown then, is that R and E
agree on U2; that is, R◦ = E ∩ (U × U).

Claim: For all a ∈ U , Ea∩U is Zariski dense in R◦a = Ra∩U . Since E is Zariski
dense in S, and R and S agree on U2 (as P ′ ⊆ P ), E∩U2 is Zariski dense in R∩U2.
But this does not imply directly that the same is true fibrewise (which is the content
of the claim). Fix i ≤ m. Since Qi is a proper analytic subset of the irreducible
Si, there must be some a ∈ U such that dim(Qi)a < dim(Si)a. But as the fibres
of (Si)U → U and (Qi)U → U are of constant dimension, dim(Qi)a < dim(Si)a for
all a ∈ U . As the fibres of (Si)U → U are pure-dimensional, we have that (Qi)a
cannot contain any irreducible component of (Si)a. Hence Ea = Sa \Qa is Zariski
dense in Sa, for all a ∈ U . Intersecting with U and recalling that R and S agree on
U2, yields the claim.

Suppose a ∈ U and b ∈ Ra ∩ U . Let c ∈ Ea ∩ U . As E is an equivalence
relation, Ec = Ea. By the Claim, it follows that Rc ∩ U = Ra ∩ U . So b ∈ Rc ∩ U
and by symmetry c ∈ Rb ∩ U . What we have shown is that Ea ∩ U ⊆ Rb ∩ U .
But as R◦ → U has fibres of constant dimension, dim(Ra ∩ U) = dim(Rb ∩ U).
Using the Claim again, we get that Ea ∩ U and Eb ∩ U must have a non-empty
intersection. Since E is an equivalence relation, Ea = Eb. In particular b ∈ Ea∩U .
We have shown that Ra ∩ U ⊆ Ea ∩ U for all a ∈ U . The converse is clear. So
R◦ = R ∩ (U × U) = E ∩ (U × U), as desired. �

The theorem of Grauert referred to above, or rather a somewhat special case of
that theorem, asserts the existence of a “generic” quotient of a compact complex
manifold by a meromorphic equivalence relation:

Fact 5.3 (Grauert [14]). Suppose X is a compact complex manifold and R is a
meromorphic equivalence relation on X with degeneracy set P . Then there exist
compact complex varieties X ′ and Q, a modification σ : X ′ → X, and a holomorphic
map q : X ′ → Q, such that

(i) for each s ∈ Q, σ(q−1(s)) ∩ (X \ P ) is either empty or an R◦-class; and,
(ii) the association s 7−→ σ(q−1(s))∩ (X \P ) yields a bijection between the set
{s ∈ Q : σ(q−1(s)) ∩ (X \ P ) 6= ∅} and the set of R◦-classes.

Corollary 5.4. Th(A) admits elimination of imaginaries.

Proof. By quantifier elimination, resolution of singularities, and induction on di-
mension, it suffices to prove: If X is a compact complex manifold and E is a
definable equivalence relation on X, then there exists a non-empty Zariski open
subset U ⊆ X, a compact complex variety Q, and a definable map f : U → Q, such
that f(a) = f(b) if and only if aEb.
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By Proposition 5.2 we have a meromorphic equivalence relation on X, R, with
degeneracy set P , such that R agrees with E on the Zariski open subset U = X \P .
Let σ : X ′ → X and q : X ′ → Q be as in Fact 5.3. We define a function f : U → Q
by f(a) = s if there exists x ∈ q−1(s) such that σ(x) = a. Then f is a definable
function, and for all a, b ∈ U , f(a) = f(b) if and only if aEb. �
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