
Network Bargaining: Using Approximate
Blocking Sets to Stabilize Unstable Instances

Jochen Könemann1, Kate Larson2, and David Steiner2

1 Department of Combinatorics and Optimization, University of Waterloo, Waterloo,
Ontario N2L 3G1, Canada
jochen@uwaterloo.ca

2 Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada

{klarson,dasteine}@uwaterloo.ca

Abstract. We study a network extension to the Nash bargaining game,
as introduced by Kleinberg and Tardos [6], where the set of players corre-
sponds to vertices in a graph G = (V,E) and each edge ij ∈ E represents
a possible deal between players i and j. We reformulate the problem as
a cooperative game and study the following question: Given a game with
an empty core (i.e. an unstable game) is it possible, through minimal
changes in the underlying network, to stabilize the game? We show that
by removing edges in the network that belong to a blocking set we can
find a stable solution in polynomial time. This motivates the problem of
finding small blocking sets. While it has been previously shown that find-
ing the smallest blocking set is NP-hard [2], we show that it is possible
to efficiently find approximate blocking sets in sparse graphs.

1 Introduction

In the classical Nash bargaining game [9], two players seek a mutually
acceptable agreement on how to split a dollar. If no such agreement can be
found, each player i receives her alternative αi. Nash’s solution postulates,
that in an equilibrium, each player i receives her alternative αi plus half
of the surplus 1 − α1 − α2 (if α1 + α2 > 1 then no mutually acceptable
agreement can be reached, and both players settle for their alternatives).

In this paper, we consider a natural network extension of this game
that was recently introduced by Kleinberg and Tardos [6]. Here, the set
of players corresponds to the vertices of an undirected graph G = (V,E);
each edge ij ∈ E represents a potential deal between players i and j
of unit value. In Kleinberg and Tardos’ model, players are restricted to
bargain with at most one of their neighbours. Outcomes of the network
bargaining game (NB) are therefore given by a matching M ⊆ E, and an
allocation x ∈ RV+ such that xi + xj = 1 for all ij ∈M , and xi = 0 if i is
M -exposed; i.e., if it is not incident to an edge of M .

2

Unlike in the non-network bargaining game, the alternative αi of
player is not a given parameter but rather implicitly determined by the
network neighbourhood of i. Specifically, in an outcome (M,x), player i’s
alternative is defined as

αi = max{1− xj : ij ∈ δ(i) \M}, (1)

where δ(i) is the set of edges incident to i. Intuitively, a neighbour j of
i receives xj in her current deal, and i may coerce her into a joint deal,
yielding i a payoff of 1− xj .

An outcome (M,x) of NB is called stable if xi + xj ≥ 1 for all edges
ij ∈ E, and it is balanced if in addition, the value of the edges in M is
split according to Nash’s bargaining solution; i.e., for a matching edge ij,
xi − αi = xj − αj .

Kleinberg and Tardos gave an efficient algorithm to compute balanced
outcomes in a graph (if these exist). Moreover, the authors characterize
the class of graphs that admit such outcomes. In the following main the-
orem of [6], a vertex i ∈ V is called inessential if there is a maximum
matching in G that exposes i.

Theorem 1 ([6]). An instance of NB has a balanced outcome iff it has
a stable one. Moreover, it has a stable outcome iff no two inessential
vertices are connected by an edge.

The theory of cooperative games offers another useful angle for NB.
In a cooperative game (with transferable utility) we are given a player
set N , and a valuation function v : 2N → R+; v(S) can be thought of as
the value that the players in S can jointly create. The matching game [4,
12] is a specific cooperative game that will be of interest for us. Here,
the set of players is the set of vertices V of a given undirected graph.
The matching game has valuation function ν where ν(S) is the size of a
maximum matching in the graph G[S] induced by the vertices in S.

One goal in a cooperative game is to allocate the value v(N) of the
so called grand coalition fairly among the players. The core is in some
sense the gold-standard among the solution concepts that prescribe such
a fair allocation: a vector x ∈ R

N
+ is in the core if (a) x(N) = v(N),

and (b) x(S) ≥ v(S) for all S ⊆ N , where we use x(S) as a short-hand
for
∑

i∈S xi. In the special case of the matching game, this is seen to be
equivalent to the following:

C(G) = {x ∈ RV+ : x(V) = ν(V) and xu + xv ≥ 1, ∀uv ∈ E}. (2)

3

Thus, the core of the matching game consists precisely of the set of stable
outcomes of the corresponding NB game. This was recently also observed
by Bateni et al. [1] who remarked that the set of balanced outcomes of
an instance of NB corresponds to the elements in the intersection of core
and prekernel (e.g., see [3, 10] for a definition),of the associated matching
game instance.

1.1 Dealing with unstable instances

Using the language of cooperative game theory and the work of Bateni
et al. [1], we can rephrase the main results of [6] as follows: Given an
instance of NB, if the core of the underlying matching game is non-empty
then there is an efficient algorithm to compute a point in the intersection
of core and prekernel. Such an algorithm had previously been given by
Faigle et al. in [5]. It is not hard to see that the core of an instance of
the matching game is non-empty if and only if the fractional matching
LP for this instance has an integral optimum solution. We state this LP
and its dual below; we let δ(i) denote the set of edges incident to vertex
i in the underlying graph, and use y(δ(i)) as a shorthand for the sum of
ye over all e ∈ δ(i).

max
∑
e∈E

ye (P)

s.t. y(δ(i)) ≤ 1 ∀i ∈ V
y ≥ 0

min
∑
i∈V

xi (D)

s.t. xi + xj ≥ 1 ∀ij ∈ E (3)

x ≥ 0,

LP (P) does of course typically have a fractional optimal solution,
and in this case the core of the corresponding matching game instances
is empty. Core assignments are highly desirable for their properties, but
may simply not be available for many instances. For this reason, a num-
ber of more forgiving alternative solution concepts like bargaining sets,
kernel, nucleolus, etc. have been proposed in the cooperative game theory
literature (e.g., see [3, 10]).

This paper addresses network bargaining instances that are unstable;
i.e., for which the associated matching game has an empty core. From
the above discussion, we know that there is no solution x to (D) that
also satisfies 1Tx ≤ ν(V). We therefore propose to find an allocation x
of ν(V) that violates the stability condition in the smallest number of
places. Formally, we call a set B of edges a blocking set if there is x ∈ RV+
such that 1Tx ≤ ν(V), and xi + xj ≥ 1 for all ij ∈ E \B.

4

Blocking sets were previously discussed by Biró et al. [2]. The au-
thors showed that finding a smallest such set is NP-hard (via a reduction
from maximum independent set). In this paper, we complement this re-
sult by showing that approximate blocking sets can be computed in sparse
graphs. A graph G = (V,E) is ω-sparse for some ω ≥ 1 if for all S ⊆ V ,
the number of edges in the induced graph G[S] is bounded by ω |S|. For
example, if G is planar, then we may choose ω = 3 by Euler’s formula.

Theorem 2. Given an ω-sparse graph G = (V,E), there is an efficient
algorithm for computing blocking sets of size at most 8ω + 2 times the
optimum.

The main idea in our algorithm is a natural one: formulate the block-
ing set problem as a linear program, and extract a blocking set from one
of its optimal fractional solutions via an application of the powerful tech-
nique of iterative rounding (e.g., see [8]). We first show that the proposed
LP has an unbounded integrality gap in general graphs, and is therefore
not useful for the design of approximation algorithms for such instances.
We turn to the class of sparse graphs, and observe that, even here, ex-
treme points of the LP can be highly fractional, ruling out the direct use of
standard techniques. We carefully characterize problem extreme-points,
and develop a direct rounding method for them. Our approach exploits
problem-specific structure as well as the sparsity of the underlying graph.

Given a blocking set B, let E′ = E \B be the non-blocking set edges,
and let G′ = (V,E′) be the induced graph. Notice that the matching
game induced by G′ may still have an empty core, and that the maximum
matching in G′ may even be smaller than that in G. We are however able
to show that we can find a balanced allocation of ν(V) as follows: let M ′

be a maximum matching in G′, and define the alternative of player i as

α′i = max{1− xi : ij ∈ δG′(i) \M ′},

for all i ∈ V . Call an assignment x is balanced if it satisfies the stability
condition (3) for all edges ij ∈M ′, and

xi − α′i = xj − α′j ,

for all ij ∈ M ′. A straight-forward application of an algorithm of Faigle
et al. [5] yields a polynomial-time method to compute such an allocation.
Details are omitted from this extended abstract.

5

2 Finding small blocking sets in sparse graphs

We attack the problem of finding a small blocking set via iterative linear
programming rounding. In order to do this, it is convenient to introduce
a slight generalization of the blocking set problem. In an instance of the
generalized blocking set problem (GBS), we are given a graph G = (V,E),
a partition E1 ∪ E2 of E, and a parameter ν ≥ 0. The goal is to find a
blocking set B ⊆ E1, and an allocation x ∈ R

V
+ such that 1Tx ≤ ν and

xu + xv ≥ 1 for all uv ∈ E \ B, where 1 is a vector of 1s of appropriate
dimension. The problem is readily formulated as an integer program. We
give its relaxation below on the left.

min 1
T z (PB)

s.t. xu + xv + zuv ≥ 1

∀uv ∈ E1 (4)

xu + xv ≥ 1

∀uv ∈ E2 (5)

1
Tx ≤ ν (6)

x, z ≥ 0

max 1
Ta+ 1

T b− γ ν (DB)

s.t. a(δE1(u))+

b(δE2(u)) ≤ γ ∀u ∈ V (7)

a ≤ 1

a, b ≥ 0

The LP on the right is the dual of (PB). It has a variable ae for
all e ∈ E1, a variable be for all e ∈ E2, and variable γ corresponds to
the primal constraint limiting 1

Tx. We can show the LP is weak and
hence not useful for approximating the generalized blocking set problem
in general graphs (for details, see [7]).

Lemma 1. The integrality gap of (PB) is Ω(n), where n is the number
of vertices in the given instance of the blocking set problem.

Given this negative result, we will focus on sparse instances (G, ν)
and prove Theorem 2. We first characterize the extreme points of (PB).

2.1 Extreme points of (PB)

In the following, we assume that the underlying graph G is bipartite; this
assumption will greatly simplify our presentation, and will turn out to be
w.l.o.g. Let (x, z) be a feasible solution of LP (PB), and letA=(x, z)T = b=

be the set of tight constraints of the LP. It is well known (e.g., see [11]
and also [8]) that (x, z) is an extreme point of the feasible region if A=

6

has full column-rank. In particular, (x, z) is uniquely determined by any
full-rank sub-system A′(x, z)T = b′ of A=(x, z)T = b=. If constraint (6) is
not part of this system of equations, then

A′ = [A′′, I],

where A′′ is a submatrix of the edge-vertex incidence matrix of a bipartite
graph, and I is an identity matrix of appropriate dimension. Such matrices
A′ are well-known to be totally unimodular (e.g., see [11]), and (x, z) is
therefore integral in this case. From now on, we therefore assume that
constraint (6) is tight, and that (x, z) is the unique solution to[

A′′ I
1
T
0
T

](
x̄
z̄

)
=

(
1

ν

)
, (8)

where A′′ is a submatrix of the edge, vertex incidence matrix of bipartite
graph G, I is an identity matrix, and 1

T and 0
T are row vectors of 1’s

and 0’s, respectively. We obtain the following useful lemma.

Lemma 2. Let (x, z) be a non-integral extreme point solution to (PB)
satisfying (8). Then there is an α ∈ (0, 1) such that xu, zuv ∈ {0, α, 1 −
α, 1} for all u ∈ V , and uv ∈ E1.

Proof. Standard linear algebra implies that the solution space to the the
system [A′′ I](x̄, z̄)T is a line; i.e., it has dimension 1. Hence, there are two
extreme points (x1, z1) and (x2, z2) of the integral polyhedron defined by
constraints (4), (5), and the non-negativity constraints, and some α ∈
[0, 1] such that (

x
z

)
= α

(
x1

z1

)
+ (1− α)

(
x2

z2

)
.

In fact, α must be in (0, 1) as (x, z) is assumed to be fractional. This
implies the lemma. ut

We call an extreme point good if there is a vertex u with xu = 1, or
an edge uv ∈ E1 with zuv ∈ {0} ∪ [1/3, 1]. Let us call an extreme point
bad otherwise. We will now characterize the structure of a bad extreme
point (x, z). Let G = (V,E1 ∪E2) be the bipartite graph for a given GBS
instance. Let T1 ⊆ E1 and T2 ⊆ E2 be E1 and E2 edges corresponding
to tight inequalities of (PB) that are part of the defining system (8) for
(x, z). Let α be as in Lemma 2. Since (x, z) is bad, it must be that either

7

α or 1 − α is larger than 2/3; w.l.o.g., assume that α > 2/3. We define
the following useful sets:

X = {u ∈ V : xu = 1− α}
Y = {u ∈ V : xu = α}
O = {u ∈ V : xu = 0}.

Lemma 3. Let (x, z) be a bad extreme point. Using the notation defined
above, we have

(a) zuv = (1− α) for all uv ∈ E1,
(b) O ∪X is an independent set in G
(c) Each T1 edge is incident to exactly one O and one Y vertex, and the

edges of T2 form a tree spanning X ∪ Y . Each edge in E is incident
to exactly one Y vertex.

Proof. We know from Lemma 2 that zuv ∈ {0, 1−α, α, 1} for all uv ∈ E1;
(a) follows now directly from the fact that (x, z) is bad.

No two vertices u, v ∈ O can be connected by an edge, as such an edge
uv must then have zuv = 1. Similarly, no two vertices u, v ∈ X can be
connected by an edge as otherwise zuv ≥ 1−2(1−α) > 1/3. Finally, for an
edge uv between O and X, we would have to have zuv ≥ 1−(1−α) > 2/3,
which once again can not be the case. This shows (b).

To see (c), consider first an edge uv in T1; we must have xu + xv = α,
and this is only possible if uv is incident to one O and one Y vertex.
Similarly, xu + xv = 1 for all uv ∈ T2, and therefore one of u and v
must be in X, and one must be in Y . It remains to show that the edges
in T2 induce a tree. Let us first show acyclicity: suppose for the sake
of contradiction that u1v1, . . . , upvp ∈ T2 form a cycle (i.e., u1 = vp).
Then since G is bipartite, this cycle contains an even number of edges.
Let χ1, . . . , χp be the 0, 1-coefficient vector of the left-hand sides of the
constraints belonging to these edges. We see that

p∑
i=1

(−1)iχi = 0,

contradicting the fact that the system in (8) has full (row) rank. Note
that the size of the support of (x, z) is

|T1|+ |X|+ |Y | (9)

by definition. On the other hand, the rank of the system in (8) is

|T1|+ |T2|+ 1 ≤ |T1|+ (|X|+ |Y | − k) + 1,

8

where k is the number of components formed by the edges in T2. The
rank of (8) must be at least the size of the support, and this is only the
case when k = 1; i.e., when T2 forms a tree spanning X ∪ Y . Since G is
bipartite, X must be fully contained in one side of the bipartition of V ,
and Y must be fully contained in the other. Since Y is a vertex cover in
G by (b), every edge in E must have exactly one endpoint in Y . ut

2.2 Blocking sets in sparse graphs via iterative rounding

In this section we propose an iterative rounding (IR) type algorithm to
compute a blocking set in a given sparse graph G = (V,E). Recall that
this means that there is a fixed parameter ω > 0 such that the graph
induced by any set S of vertices has at most ω|S| edges. Recall that we
also initially assume that the underlying graph G is bipartite.

The algorithm we propose follows the standard IR paradigm (e.g.,
see [8]) in many ways: given some instance of the blocking set problem,
we first solve LP (PB) and obtain an extreme point solution (x, z). We
now generate a smaller sub-instance of GBS such that (a) the projection
of (x, z) onto the sub-instance is feasible, and (b) any integral solution
to the sub-instance can cheaply be extended to a solution of the original
GBS instance. In particular, the reader will see the standard steps familiar
from other IR algorithms: if there is an edge uv ∈ E1 with zuv = 0 then
we may simply drop the edge, if zuv ≥ 1/3 then we include the edge into
the blocking set, and if xu = 1 for some vertex, then we may install one
unit of x-value at u permanently and delete u and all incident edges.

The problem is that the feasible region of (PB) has bad extreme
points, even if the underlying graph is sparse and bipartite. We will ex-
ploit the structural properties documented in Lemma 3 and show that a
small number of edges can be added to our blocking set even in this case.
Crucially, these edges will have to come from both E1 and E2.

In an iteration of the algorithm, we are given a sub-instance of GBS.
We first solve (PB) for this instance, and obtain an optimal basic solution
(x, z). Inductively we maintain the following: The algorithm computes a
set B̂ ⊆ E of edges, and vector x̂ ∈ RV such that

[I1] x̂u + x̂v ≥ 1 for all uv ∈ E \ B̂,
[I2] 1T x̂ ≤ ν, and
[I3] |B̂| ≤ (2ω + 1) · 1T z,

where ω is the sparsity parameter introduced above. Let us first assume
that the extreme point solution (x, z) is good. In this case we proceed
according to one of the following cases:

9

Case 1. (∃u ∈ V with xu = 1) In this case, all edges incident to u
are covered. We obtain a subinstance of GBS by removing u and all
incident edges from G, and by reducing ν by 1.

Case 2. (∃uv ∈ E with zuv = 0) In this case, obtain a new instance of
GBS by removing uv from E1, and adding it to E2.

Case 3. (∃uv ∈ E1 with zuv ≥ 1/3) In this case add uv to the approxi-
mate blocking set B, and remove uv from E1.

In each of these three cases, we inductively solve the generated sub-
instance of GBS. If this subinstance is the empty graph, then we can
clearly return the empty set.

Let us now consider the case where (x, z) is a bad extreme point. This
case will constitute a leaf of the recursion tree, and we will show that we
can directly find a small blocking set. In the following lemma, we define
the sets X,Y,O ⊆ V as in Lemma 3. Its proof is deferred to [7].

Lemma 4. Let (x, z) be a bad extreme point, and let ν be the current
bound on 1

Tx. Then (|X|+ |Y |)/2 < ν < |Y |.

We can use this bound on ν to prove that we can find small blocking
sets given a bad extreme point for (PB).

Lemma 5. Given a bad extreme point (x, z) to (PB), we can find a block-
ing set B̂ ⊆ E, and corresponding x̂ such that 1

T x̂ ≤ ν, and |B̂| ≤
(2ω + 1) · 1T z.

Proof. We will construct a blocking set B̂ as follows: let x̂u = 1 for a
carefully chosen set Ŷ of ν vertices from the set Y , and let x̂u = 0 for
all other vertices in V . Recall once more from Lemma 3 (b) that Y is a
vertex cover in G, and hence it suffices to choose

B̂ =
⋃

u∈Y \Ŷ

δ(u) =
⋃

u∈Y \Ŷ

(
δE1(u) + δE2(u)

)
(10)

as our blocking set, where δEi(u) denotes the set of Ei edges incident to
vertex u. Let (a, b, γ) be the optimal dual solution of (DB) corresponding
to extreme point (x, z). Then note that complementary slackness together
with the fact that zuv > 0 for all uv ∈ E1 implies that auv = 1 for these
edges as well. Thus γ is an upper bound on the number E1-edges incident
to a vertex u by dual feasibility. With (10) we therefore obtain

|B̂| ≤
∑

u∈Y \Ŷ

(γ + |δE2(u)|) ≤ (|Y | − ν)γ +
∑

u∈Y \Ŷ

|δE2(u)|. (11)

10

Lemma 3 (c) shows that each E2 edge is incident to one X, and one Y
vertex. As the subgraph induced by X and Y is sparse, there therefore
must be a vertex u1 ∈ Y of degree at most ω(|X| + |Y |)/|Y |. Removing
this vertex from G leaves a sparse graph, and we can therefore find a
vertex u2 of degree at most ω(|X| + |Y | − 1)/(|Y | − 1). Repeating this
|Y | − ν times we pick a set u1, . . . , u|Y |−ν of vertices such that

|Y |−ν∑
i=1

|δE2(ui)| ≤
|Y |−ν∑
i=1

ω(|X|+ |Y | − i)
|Y | − i

≤

(|Y | − ν) · ω(|X|+ |Y |)
ν

≤ 2ω(|Y | − ν), (12)

where the last inequality follows from Lemma 4. We now let Ŷ =
Y \ {u1, . . . , u|Y |−ν}, and hence let x̂u = 1 for u ∈ Ŷ , and x̂u = 0 for all
other vertices u ∈ V ; (11) and (12) together imply that

|B̂| ≤ (|Y | − ν)(γ + 2ω) ≤ (2ω + 1)γ(Y − ν),

where the last inequality follows from the fact that γ ≥ 1. Lemma 3(c)
shows that each edge e ∈ E has exactly one endpoint in Y . Applying
complementary slackness together with the fact that xu > 0 for all u ∈ Y ,
we can therefore rewrite the objective function of (DB) as

1
Ta+ 1

T b− γ ν = γ(|Y | − ν).

The lemma follows. ut

We can now put things together.

Lemma 6. Given an instance of GBS, the above procedure terminates
with a set B̂ ⊆ E, and x̂ ∈ R

V such that 1T x̂ ≤ ν, and x̂u + x̂v ≥ 1 for
all uv ∈ E \ B̂. The set B̂ has size at most (2ω + 1)1T z, where (x, z) is
an optimal solution to (PB) for the given GBS instance.

Proof. The proof uses the usual induction on the recursion depth. Let us
first consider the case where the current instance is a leaf of the recursion
tree. The lemma follows vacuously if the graph in the given GBS instance
is empty. Otherwise it follows immediately from Lemma 5.

Any internal node of recursion tree corresponds to an instance of GBS
where (x, z) is a good extreme point. We claim that, no matter which one
of the above cases we are in, we have that (a) a suitable projection of (x, z)

11

yields a feasible solution for the created GBS sub-instance, and (b) we
can augment an approximate blocking set for this sub-instance to obtain
a good blocking set for the instance given in this iteration. We proceed by
looking at the three cases discussed above.

Case 1. Let (x′, z′) be the natural projection of (x, z) onto the GBS sub-
instance; i.e., x′v is set to xv for all vertices in V − u, and z′vw = zvw for
the remaining edges vw ∈ E1 \ δ(u). This solution is easily verified to be
feasible. Inductively, we therefore know that we obtain a blocking set B̄
and corresponding vector x̄ such that B̄ has no more than (2ω+1)1T z̄ ≤
(2ω + 1) 1T z elements, and 1

T x̄ ≤ ν − 1. Thus, letting x̂v = x̄v for all
v ∈ V − u, and x̂u = 1 together with B̂ = B̄ gives a feasible solution for
the original GBS instance.

Case 2. The argument for this case is virtually identical to that of Case
1, and we omit the details.

Case 3. Once again we project the current solution (x, z) onto the GBS
subinstance; i.e., let x′ = x, and z′qr = zqr for all qr ∈ E1 − uv. Clearly
(x′, z′) is feasible for the GBS subinstance, and inductively we therefore
obtain a vector x̄ and corresponding feasible blocking set B̄ of size at most
(2ω + 1) · 1T z′. Adding uv to B̄ yields a feasible blocking set B̂ for the
original instance together with x̂ = x̄. Its size is at most (2ω+1) 1T z′+1 ≤
(2ω + 1) 1T z as ω ≥ 1. ut

Suppose now that we are given a non-bipartite, sparse instance of the
blocking set problem: G = (V,E) is a general sparse graph, and ν > 0 is
a parameter. We create a bipartite graph H in the usual way: for each
vertex u ∈ V create two copies u1 and u2 and add them to H. For each
edge uv ∈ E, add two edges u1v2 and u2v1 to H. The new blocking set
instance is given by (H, ν ′) where ν ′ = 2ν.

Given a feasible solution (x, z) to (PB) for the instance (G, ν) , we let
x′ui = xu for all u ∈ V and i ∈ {1, 2}, and z′uivj = zuv for all edges uivj .
For any edge uivj in H, we now have

x′ui + x′vj + zuivj = xu + xv + zuv ≥ 1,

and 1
Tx′ ≤ 21Tx ≤ 2ν. Thus, (x′, z′) is feasible to (PB) for instance

(H, ν ′), and its value is at most twice that of 1T z. Let x̂, B̂ be a feasible
solution to the instance on graph H. Then let

B = {uv ∈ E : u1v2 or u2v1 are in B̂},

12

and note that B has size at most that of B̂. Also let xu = (x̂u1 + x̂u2)/2
for all u ∈ V . Clearly, 1Tx ≤ ν, and for any edge uv ∈ E, we have

xu + xv ≥
x̂u1 + x̂u2 + x̂v1 + x̂v2

2
,

and the right-hand side is at least 1 if none of the two edges u1v2, u2v1 is
in B̂. This shows feasibility of the pair x,B. In order to prove Theorem 2
it now remains to show that graph H is sparse. Pick any set S of vertices
in H, and let

S′ = {v ∈ V : at least one of v1 and v2 are in S}.

Then |S′| ≤ |S|, and the number of edges of H[S] is at most twice the
number of edges in G[S′], and hence bounded by 2ω |S|; we let ω′ =
2ω be the sparsity parameter of H. Let (x, z) and (x′, z′) be optimal
basic solutions to (PB) for instances (G, ν), and (H, ν ′), respectively. The
blocking set B for G has size no more than

(2ω′ + 1)1T z′ ≤ 2(4ω + 1)1T z.

Thus, we have proven Theorem 2.

References

1. Bateni, M., Hajiaghayi, M., Immorlica, N., Mahini, H.: The cooperative game
theory foundations of network bargaining games. In: Proceedings of International
Colloquium on Automata, Languages and Processing. pp. 67–78 (2010)

2. Biró, P., Kern, W., Paulusma, D.: On solution concepts for matching games. In:
TAMC. pp. 117–127 (2010)

3. Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational Aspects of Coop-
erative Game Theory. Synthesis Lectures on Artificial Intelligence and Machine
Learning, Morgan & Claypool Publishers (2011)

4. Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of combina-
torial optimization games. Math. Oper. Res. 24(3), 751–766 (1999)

5. Faigle, U., Kern, W., Kuipers, J.: An efficient algorithm for nucleolus and prekernel
computation in some classes of tu-games. Tech. Rep. 1464, U. of Twente (1998)

6. Kleinberg, J.M., Tardos, É.: Balanced outcomes in social exchange networks. In:
Proceedings of ACM Symposium on Theory of Computing. pp. 295–304 (2008)

7. Könemann, J., Larson, K., Steiner, D.: Network bargaining: Using approximate
blocking sets to stabilize unstable instances. Tech. Rep. submit/0522859, arXiV
(2012), (full version)

8. Lau, L.C., Ravi, R., Singh, M.: Iterative Methods in Combinatorial Optimization.
Cambridge University Press (2011)

9. Nash, J.: The bargaining problem. Econometrica 18, 155–162 (1950)
10. Peleg, B., Sudhölter, P.: Introduction to the Theory of Cooperative Games.

Springer (2003)
11. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
12. Shapley, L.S., Shubik, M.: The assignment game : the core. International Journal

of Game Theory 1(1), 111–130 (1971), http://dx.doi.org/10.1007/BF01753437

