
Primal-Dual Based Distributed Algorithms for Vertex Cover
with Semi-Hard Capacities∗

F. Grandoni
Informatica, Università di

Roma “La Sapienza”
Via Salaria 113

00198 Roma, Italy

grandoni@di.uniroma1.it

J. Könemann
†

Department of Combinatorics
and Optimization

University of Waterloo
Waterloo, ON N2L 3G1,

Canada

jochen@uwaterloo.ca

A. Panconesi, M. Sozio
Informatica, Università di

Roma “La Sapienza”
Via Salaria 113

00198 Roma, Italy

ale,sozio@di.uniroma1.it

ABSTRACT
In this paper we consider the weighted, capacitated vertex cover
problem with hard capacities (capVC). Here, we are given an undi-
rected graph G = (V, E), non-negative vertex weights wtv for all
vertices v ∈ V , and node-capacities Bv ≥ 1 for all v ∈ V . A fea-
sible solution to a given capVC instance consists of a vertex cover
C ⊆ V . Each edge e ∈ E is assigned to one of its endpoints in C
and the number of edges assigned to any vertex v ∈ C is at most
Bv . The goal is to minimize the total weight of C.

For a parameter ε > 0 we give a deterministic, distributed al-
gorithm for the capVC problem that computes a vertex cover C of
weight at most (2+ε)·optwhere opt is the weight of a minimum-
weight feasible solution to the given instance. The number of edges
assigned to any node v ∈ C is at most (4 + ε) · Bv . The running
time of our algorithm is O(log(nW)/ε), where n is the number
of nodes in the network and W = wtmax/wtmin is the ratio of
largest to smallest weight.

This result is complemented by a lower-bound saying that any
distributed algorithm for capVC which requires a poly-logarithmic
number of rounds is bound to violate the capacity constraints by a
factor two.

The main feature of the algorithm is that it is derived in a sys-
tematic fashion starting from a primal-dual sequential algorithm.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity—Nonnumerical Algorithms and Problems

∗This work was partially supported by EU projects DELIS and
EYES, and by Project WebMinds of the Italian Ministry of Uni-
versity and Research (MIUR).
†This work was done while being on leave at the Dipartimento di
Informatica at Università di Roma “La Sapienza”, Italy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’05, July 17–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-59593-994-2/05/0007 ...$5.00.

General Terms
Algorithms, Theory

Keywords
Vertex Cover, Approximation Algorithms, Distributed Algorithms,
Primal-Dual Algorithms

1. INTRODUCTION
The capacitated vertex cover problem (capVC) is the variant

of vertex cover in which there is a limit to the number of edges
that a vertex can cover. A precise formulation of the problem is as
follows. We are given an n-node undirected graph G = (V, E),
non-negative weights wtv and parameters bv ≥ 1 for all vertices
v ∈ V . Moreover, we have node-capacities Bv ≥ 1 for all nodes
v ∈ V . A solution to a given capVC instance consists of an integer
vector {xv}v∈V and an assignment π : E → C of edges to nodes
such that

1. 0 ≤ xv ≤ bv for all nodes v ∈ V ,

2. π(e) ∈ {u, v} for all edges e = (u, v) ∈ E, and

3. |π−1(v)| ≤ Bv · xv for all v ∈ C.

The goal is to find a feasible solution that has minimum cost
X

v∈V

xvwtv.

The first set of constraints specifies the maximum number of copies
of each vertex that can be opened. The second says that every edge
must be covered by some vertex. The third set, the capacity con-
straints, specifies the maximum number of edges that each vertex
can cover.

Several relaxations of the problem have been considered in the
literature. We consider the semihard-capacity version of the prob-
lem where at most one copy of each node is opened, but a node v
in the cover may be assigned more than Bv edges; hence the term
semi-hard. For a parameter ε > 0 our algorithms computes a ver-
tex cover C of weight at most (2 + ε) · opt. We give a distributed
algorithm that assigns each edge e ∈ E to one of its endpoints in
C in such a way that |π−1(v)| ≤ (4 + ε) · Bv for all v ∈ C. A
sequential version of this algorithm assigns at most (2 + ε) · Bv

edges to each node.

In the synchronous, message-passing model of computation the
algorithm takes O(log(nW)/ε) many rounds, where

W = wtmax/wtmin

is the ratio of largest to smallest weight. This reduces to O(log n/ε)
for the interesting case of unit weights. These results are comple-
mented by strong lower-bounds and by (previously known) hard-
ness of approximation results. Our algorithms are deterministic,
while typically efficient distributed algorithms for graph problems
require randomization (see [15, 16, 17, 8, 18, 20] among others).

In our opinion the most interesting aspect of our work is that
the distributed algorithm is derived in a systematic fashion from a
sequential primal-dual algorithm. To our knowledge, the first re-
sult of this kind is the (2 + ε)-approximate vertex cover algorithm
described in [13]. Although described for the PRAM setting, the
algorithm can be easily adapted to the distributed case. Our paper
takes the primal-dual approach pioneered in [13] one step further,
giving a new and considerably more sophisticated example. Sub-
sequent to the work described in this paper two more examples
of this methodology have been discovered. In [2] it is shown that
the primal-dual algorithm of [9] for capacitated vertex cover with
soft capacities can be turned into an efficient distributed algorithm
with the same approximation guarantee. Likewise, the primal-dual
algorithm of [12] for facility location is turned into an efficient,
distributed algorithm that opens facilities at optimal cost, while vi-
olating the distance requirements by a factor of at most three. By
“efficient” we mean that the number of communication rounds is
poly-logarithmic in the size of the network.

Given the power of the primal-dual methodology as a tool to de-
sign approximation algorithms, and the evidence above, we believe
that the results in this paper indicate that the approach first intro-
duced in [13] and further developed here is a new and promising
line of research.

Capacity constraints arise naturally in distributed computing and
computer networking. E.g., the scatternet-formation problem of
ad hoc Bluetooth networks asks for a small dominating set where
each node in the set dominates at most 7 vertices [4]. More gener-
ally, a small dominating set can act as the backbone of the routing
infrastructure of an ad hoc network (see [21, 19] and references
therein). Introducing capacities is an effective way to distribute the
load among the nodes of the backbone while taking care of their
computational and energy limitations. To the best of our knowl-
edge, our paper is the first result that considers a capacitated net-
work design problem from distributed computing point of view.

Related work. Although not exactly based on a primal-dual al-
gorithm, recent work on the dominating set problem showed con-
nections between LP-duality and the design of distributed algo-
rithms [14, 20].

The capacitated vertex cover problem was first introduced by
Guha et al. [9] who consider the soft-capacity version of the prob-
lem (capVCs) where bv = ∞ for all v ∈ V . Intuitively this means
that a vertex can make as many copies of itself as is needed to cover
all the edges. Guha et al. first present a simple 4-approximate
LP-rounding based algorithm. Later on, the authors show a 2-
approximate primal-dual algorithm. Subsequently, Gandhi et al. [7]
present a 2-approximate LP-rounding algorithm for capVCs.

The capacitated vertex-cover problem becomes much harder once
we allow bv < ∞ for nodes v ∈ V . Chuzhoy and Naor [3] give
a sophisticated 3-approximate LP-rounding algorithm for the spe-
cial case of capVC with uniform vertex weights. Finally, in [6],
Gandhi et al. give an LP-rounding-based 2-approximation algo-
rithm for capVC with uniform weights.

In [3], Chuzhoy and Naor also show that capVC in the presence

of non-uniform vertex weights is as hard to approximate as set-
cover. Feige [5] shows that it is impossible to obtain better than a
(1 + o(1)) log(n)-approximation for the set-cover problem unless
NP ⊆ DTIME(nlog log n).

The best known approximation algorithm for the vertex-cover
problem without capacities is due to Halperin [10] and achieves
a performance ratio of (2 − o(1)) for general graphs. Earlier 2-
approximations are due to Bar-Yehuda and Even [1] and Hoch-
baum [11]. As mentioned, the same bound is essentially achievable
in a distributed setting [13].

Our contribution. The first result we give is a polynomial-time
primal-dual approximation algorithm for semi-hard constraints.

THEOREM 1. Given a feasible capVC instance with capaci-
ties Bv ≥ 1 for all v ∈ V . There is a polynomial-time primal-
dual algorithm that computes a solution ({xv}v∈V , π) such that
|π−1(v)| ≤ 2Bv for all v ∈ V and

P

v∈V wtvxv ≤ 2 · opt
where opt is the weight of an optimum feasible solution.

We remark that if the input instance does not have a feasible solu-
tion then our algorithm terminates with a certificate of infeasibility.
The above result is interesting in view of the following lower bound
proven in [3]: capVC with hard capacities and polynomially large
weights is as hard to approximate as set cover. Therefore, unless
NP ⊆ DTIME(nlog log n), if one is looking for constant approxi-
mation, capacity constraints must be violated.

Besides being interesting in its own right, Theorem 1 is a natural
step toward proving the main result of this paper. We use wtmin

and wtmax to denote the minimum and maximum vertex weights
in the given capVC instance and let W = wtmax/wtmin be their
ratio.

THEOREM 2. Given a feasible instance of capVC with capaci-
ties Bv ≥ 1 for all v ∈ V , and let ε ∈ (0, 1] be an input parameter.
There is a distributed deterministic algorithm which computes a so-
lution ({xv}v∈V , π) such that |π−1(v)| ≤ (4+ε)Bv for all v ∈ V
and

P

v∈V wtvxv ≤ (2 + ε) · opt where opt is the weight of an
optimum feasible solution. The algorithm needs O(log(nW)/ε)
rounds.

We remark that the message-size of our algorithm is O(log n +
log wtmax).

Note that the running time is strongly poly-logarithmic for poly-
nomially large weights only. This includes the important special
case of unit weights. Obtaining a strongly poly-logarithmic algo-
rithm in general is a challenging open problem.

Similar to the sequential case, if the input instance does not have
a feasible solution the algorithm terminates with a certificate of in-
feasibility. This however is necessarily local in nature. That is,
some vertices will know that the algorithm has failed, but it re-
quires a linear number of communication rounds to distribute this
information across the network in general.

These theorems are complemented by the following strong lower-
bound on the communication complexity of any algorithm for the
weighted capVC problem with hard capacities:

THEOREM 3. For every fixed ε ∈ (0, 1], every distributed ap-
proximation algorithm for capVC which violates the capacity con-

straints by a factor at most (2−ε) requires Ω(n
1

1+log log n) rounds.

Thus every efficient distributed approximation algorithm for capVC
must violate the capacity constraints by a factor at least two. To-
gether with the set cover hardness of [3] this shows the approxima-
tion factors achieved by our distributed algorithm are best possible,
modulo constants.

Organization of the paper. In the following Section 2 we describe
a sequential algorithm for the capacitated vertex-cover problem and
give a proof of Theorem 1. The next section shows how to turn the
sequential algorithm into a distributed one. This is done in two
steps. First, we show how to modify the sequential algorithm into
a distributed one that computes a vertex cover that satisfies the ap-
proximation requirement. In this step we assign only a subset of
the edges. In the second and final step we assign all the remaining
edges. The proof of Theorem 3 is given in the appendix.

2. A SEQUENTIAL ALGORITHM
We present a so called primal-dual algorithm for the capVC

problem. The algorithm and its analysis are based on linear pro-
gramming duality. In the next section we therefore introduce a
linear programming formulation of the problem together with its
dual. Following that we describe our sequential algorithm and we
conclude this section with an analysis of the presented method.

2.1 A linear programming formulation
The problem can be formulated as an integer program where we

introduce a binary indicator variable xv for each v ∈ V . We let
xv = 1 if v ∈ C and xv = 0 otherwise. For each edge e =
(u, v) ∈ E we introduce two binary variables ye,v and ye,u. For
w ∈ {u, v} we let ye,w = 1 iff π(e) = w. In the following let
δ(v) be the set of edges incident to node v ∈ V in G.

min
X

v∈V

wtv · xv (IP)

s.t ye,v + ye,u ≥ 1 ∀e = (u, v) ∈ E (1)

ye,w ≤ xw ∀e = (u, v) ∈ E,

∀w ∈ {u, v} (2)
X

e=(v,u)∈δ(v)

ye,v ≤ Bv · xv ∀v ∈ V (3)

ye,v, xv ∈ {0, 1} ∀e ∈ E, v ∈ V (4)

We now let (LP) be the standard LP relaxation obtained from (IP)
by replacing the constraints (4) by

ye,v ≥ 0 ∀e = (u, v) ∈ E

0 ≤ xv ≤ 1 ∀v ∈ V (5)

In the following we use (i)v , (i)e, and (i)e,v to denote constraint
(i) for vertex v ∈ V , edge e ∈ E, and pair (e, v) ∈ E × V ,
respectively. In the linear-programming dual of (LP) we associate
a variable αe with constraint (1)e for all e ∈ E, βe,v for constraint
(2)e,v for all edges e = (u, v) ∈ E, γv for (3)v for all v ∈ V , and
ωv for the upper-bound constraints (5)v for all v ∈ V . The linear
programming dual of (LP) is then

max
X

e∈E

αe −
X

v∈V

ωv (D)

s.t αe ≤ βe,w + γw

∀e = (u, v) ∈ E, ∀w ∈ {u, v} (6)
X

e=(u,v)∈E

βe,v ≤ wtv + (ωv − Bv · γv)

∀v ∈ V (7)

α, β, γ, ω ≥ 0

2.2 The algorithm
A primal-dual algorithm is an algorithm that starts with a fea-

sible dual solution and an infeasible primal one. Throughout its

execution such an algorithm improves the dual-objective function
value of the kept dual solution and it reduces the degree of infeasi-
bility of the primal one at the same time. The algorithm terminates
as soon as the primal solution is feasible. The final dual solution is
used as a lower-bound for the optimum solution value by means of
weak duality.

In the following we say that a vertex v ∈ V is tight for a current
dual solution (α, β, γ, ω) if constraint (7)v holds with equality. We
also say that edge e = (u, v) ∈ E is w-tight for w ∈ {u, v} if
(6)e,w is satisfied with equality. Finally, for a node v ∈ V let
deg(v) be its degree in G, i.e. deg(v) = |δ(v)|.

We start with a dual feasible solution and let

α = β = γ = ω = 0.

For a current feasible dual solution we let O ⊆ V be the set of tight
vertices. We denote the final vertex cover by C. Initially all edges
in the graph are unassigned (i.e., ye,w = 0 for all w ∈ e) and O
and C are empty.

The initial part of our primal-dual algorithm resembles a stan-
dard primal-dual algorithm for the vertex-cover problem (e.g., see
[1, 11]). The algorithm raises variables αe for all edges e ∈ E
uniformly at unit rate. In order to maintain dual feasibility we also
have to raise βe,w for edges e ∈ E that are w-tight. Notice that this
is only possible if w itself is non-tight.

Once a node v ∈ V becomes tight we distinguish two cases
depending on the degree of v in G:

deg(v) ≤ 2Bv Assign all edges e ∈ δ(v) to v and subsequently
delete v and δ(v) from G. Add v to C, delete isolated non-
tight vertices from G and continue.

deg(v) > 2Bv We cannot assign the edges in δ(v) to v since this
would violate the (relaxed) capacity constraints of vertex v.
Our algorithm maintains a set of vertices H ⊆ O such that
u ∈ H iff deg(u) > 2Bu. We therefore add v to H.

For all v ∈ H we raise ωv at a rate of Bv and γv at unit
rate. Notice this implies that node v remains tight since the
right-hand side of (7)v does not change.

Also observe that variables βe,v cannot be raised further with-
out rendering our dual solution infeasible. On the other hand
the right-hand side of constraint (6)e,v for e ∈ δ(v) increases
at unit rate due to the increase in γv . Hence, for e ∈ δ(v) we
can continue to raise αe at unit rate without increasing βe,v .

The algorithm stops when all edges have been assigned.

2.3 Analysis
In this section we present a proof of Theorem 1. In the following

we assume that the algorithm from Section 2 terminates and that it
outputs a cover C together with an assignment {ye,v}e∈E,v∈V as
well as a dual solution (α, β, ω, γ). We first show that the com-
puted dual solution is feasible.

LEMMA 1. The dual solution (α, β, ω, γ) is feasible for (D).

PROOF. We can think of the execution of the algorithm as a pro-
cess over time: The algorithm starts at time 0 and then raises αe by
1 for all edges per unit of time. We prove the lemma by induction
on time.

Our initial dual solution is clearly feasible. Now consider a later
time in the algorithm. Let O be the set of tight vertices at that time.

For a vertex v ∈ V \ O and for an edge e ∈ δ(v) we raise αe

and βe,v simultaneously and hence maintain dual feasibility. For
a vertex v ∈ O we raise ωv at a rate of Bv per time unit and we

raise γv at unit rate. For all edges e ∈ δ(v) we raise αe at unit rate
as well. It is not hard to see that we maintain dual feasibility this
way.

We are ready to prove that our algorithm computes a 2-approximate
primal solution.

LEMMA 2. Our algorithm terminates with a vertex cover C and
a corresponding feasible dual solution (α, β, γ, ω) whenever there
exists a feasible solution (x, y) for (LP). In particular, we must
have

X

v∈C

wtv ≤ 2

"

X

e∈E

αe

!

−

X

v∈V

ωv

!#

.

PROOF. Assume first, for the sake of contradiction, that our
primal-dual algorithm does not terminate. It is then not hard to see
that the algorithm must reach a point in the execution, where each
node v ∈ O has degree more than 2Bv . All remaining unassigned
edges have both endpoints in O. Using the pigeon-hole principle it
follows that, in any assignment of edges to nodes, there must be at
least one node v ∈ O that has been assigned more than Bv edges.
In other words, the given input instance is infeasible.

Let v ∈ C be a vertex in the computed vertex-cover and let e ∈
δ(v) be an edge that is incident to v. Notice that our algorithm
always maintains

αe ≥ βe,v (8)

since αe is raised whenever βe,v increases and the rate of increase
is the same.

Observe also that γv is only increased if the degree deg(v) of
node v exceeds 2Bv . Let δ1(v) ⊆ δ(v) be the set of edges that are
incident to v when γv is increased for the last time in the algorithm
and notice that we must have |δ1(v)| > 2Bv . Consider an edge
e ∈ δ1(v) and note that γv and αe increase at the same rate after the
point of time where v becomes tight. Therefore, for all e ∈ δ1(v)
we must have

αe = βe,v + γv. (9)

Since v ∈ O at deletion time it must also be the case that
X

e∈δ(v)

βe,v = wtv + ωv − Bv · γv = wtv (10)

where the last equality follows from the fact that we raise ωv at a
rate of Bv if and only if we raise γv at a rate of 1.

We use δ2(v) = δ(v) \ δ1(v) and obtain

wtv =
X

e∈δ(v)

βe,v ≤

0

@

X

e∈δ1(v)

αe − γv

1

A+
X

e∈δ2(v)

αe

≤

0

@

X

e∈δ(v)

αe

1

A− (2Bv + 1)γv (11)

where the first inequality uses (10), the second inequality uses (8)
and (9), and the last inequality follows from the fact that δ1(v) is
large.

Summing (11) over all v ∈ C gives

X

v∈C

wtv ≤

X

e∈E

|e ∩ C| · αe

!

−

2 ·
X

v∈C

Bvγv

!

. (12)

Now observe that we raise γv and ωv only for tight vertices in our
algorithm and all tight vertices are eventually included in C. Hence

(12) implies

X

v∈C

wtv ≤

X

e∈E

|e ∩ C| · αe

!

−

2 ·
X

v∈V

Bvγv

!

.

The lemma follows from Bvγv = ωv for all v ∈ V and from the
fact that |e ∩ C| ≤ 2.

Lemmas 1 and 2 complete the proof of Theorem 1.

3. A DISTRIBUTED ALGORITHM
In this section we present a distributed deterministic algorithm

for capVC and provide a proof for Theorem 2. The algorithm is
based on the ideas presented in Section 2. The main problem in
giving a distributed implementation of the sequential primal-dual
algorithm from the last section is the way we increase the dual vari-
ables.

Consider for instance a path of tight nodes P = 〈u0u1 . . . u`〉.
Suppose that u0 and u` have two non-tight neighbors a and b, re-
spectively, which raise their variables β(a,u0),a and β(b,u`),b. Con-
sequently, the variables γu0 and γu`

must also be raised, and if
β(a,u0),a 6= β(b,u`),b this requires synchronization along the path
P , something that requires linear time.

Ridding the algorithm of this need for synchronization is not an
easy task. In fact it can be seen that synchronous increase of the
duals is at the heart of Lemma 2 where it is used to argue that the
dual constraints of type (6) are satisfied with equality at all times.

The distributed algorithm has two main phases:

Node-Selection In this phase we compute a vertex cover C ⊆ V
that is (2+ε)-approximate. It is here that we solve the above
mentioned synchronization problem. While computing an
approximate cover, we also assign part of the edges to the
nodes in C. At most 2Bv edges are assigned to each v ∈ C.

Edge-Assignment Here, we assign all the remaining edges to the
nodes in C. Again, at most (2 + ε)Bv edges are assigned to
each v ∈ C.

For ease of presentation we assume from now on that the given
capVC instance is feasible.

3.1 Node-selection phase
As said, the goal in the node-selection phase is to find a vertex

cover C. A node v ∈ V can be in one of four states: non-tight,
tight, inside, and outside. A node v is called active when
v’s state is either non-tight or tight. The phase terminates
when no active node remains and the final vertex cover C consists
of all nodes whose state is inside at this point. Refer to Figure
1 for an illustration of the node-states and the transitions between
them.

The distributed algorithm mimics the primal-dual algorithm from
Section 2. For the purpose of analysis and in order to motivate the
algorithm we will let the algorithm construct a feasible dual solu-
tion for (D). Initially, we let αe = βe,v = γv = ωv = 0 for all
e ∈ E and for all v ∈ V . This dual solution is clearly feasible for
(D).

Our distributed algorithm works in rounds. At the beginning of
any given round i, we let the residual weight wti

v of node v be the
difference between right-hand side and left-hand side of (7)v for
the current feasible dual solution. Thus, we initialize wt0

v to wtv

for all v ∈ V .
An active node v ∈ V is non-tight in round i if and only if its

residual weight wti
v is more than θ·wtv for some positive threshold

non-tighttight outsideinside
wt′

v ≤ θ · wtvdeg′
nt(v) ≤ 2Bv deg′(v) = 0

Figure 1: The figure shows the possible states of node v ∈ V in the node-selection phase. The arrows indicate the possible transitions
between the states. Shaded states are active while others are inactive states.

θ whose value will be fixed later (we will eventually choose θ such
that 1/θ = O(1/ε)). Once the residual weight of an active node v
drops below its threshold θ · wtv , node v becomes tight. Nodes
in inactive states (i.e., their state is either inside or outside)
are passive in the algorithm. Round i consists of two steps.

Step 1: All non-tight nodes are dormant. Each tight node v ∈ V
counts the number of active non-tight neighbors. If this number is
at most 2Bv we assign all edges connecting v to non-tight neigh-
bors to v. We also switch v’s state to inside and let v commu-
nicate its state-switch to all active neighbors. At this point each
active node v ∈ V knows the number degi(v) of active neighbors
in G.

Step 2: The behavior of an active node v ∈ V depends on its
current state:

v is non-tight: If degi(v) is 0 we know that all edges in-
cident to v have been assigned to other nodes. Therefore, we can
switch the state of v to outside.

On the other hand, assume that v has active neighbors. Raising
αe and βe,v uniformly by wti

v/degi(v) for all active edges e ∈
δ(v) decreases the residual weight of v to 0. Node v strives for
tightness and therefore proposes to any active neighbor u to raise
α(u,v) and also β(u,v),v by its proposal

pv =
wti

v

degi(v)
.

Consider an active edge e = (u, v) ∈ δ(v). We raise αe and
βe,v by min{pu, pv} and decrease the residual weight wti

v of v by
the same amount.

v is tight: Notice that step 1 guarantees that v has more than
2Bv non-tight neighbors. Node v receives proposals from all
such neighbors and lets pv be their minimum. Node v then sends
pv to all such neighbors. Note that tight nodes do not send pro-
posals to each other.

For all non-tight neighbors u of v we increase α(u,v) by pv .
In order to maintain dual feasibility, we cannot increase β(u,v),v

since v is tight. Hence we increase ωv by Bvpv and γv by pv .
We can show that the number of communication rounds needed

to complete the node-selection phase is small. Recall that W de-
notes the ratio of largest to smallest vertex weights.

LEMMA 3. The node-selection phase ends in O(log(nW)/ε)
rounds.

PROOF. We use a potential function argument in order to show
the bound on the number of communication rounds. For round
j ≥ 0 we define Φj

v = wtv/degj(v) for all non-tight nodes
v ∈ V . Then let

Φj = min
v non-tight

Φj
v.

Note that Φj is a non-decreasing function of j. In fact, we will
show that Φj doubles at least every 2/θ rounds. The lemma then
follows since wtmin

n
≤ Φ ≤ wtmax.

Suppose that v ∈ V is a non-tight node with the smallest
proposal pv in round j. We then have

pmin = pv =
wtj

v

degj(v)
≥

θ · wtv

degj(v)
≥ θ · Φj . (13)

For rounds 0 ≤ i ≤ j we let V j
i be the set of non-tight nodes

at the beginning of round j with Φj
v ≤ 2Φi, i.e. V j

i = {v ∈

V : wtj
v > θ · wtv, Φj

v ≤ 2Φi}. Consider a node v ∈ V j
i . The

reduction in its residual weight in round j is at least

degj(v) · pmin ≥ degj(v) · θ · Φj

≥ degj(v) · θ · Φi ≥ degj(v) · θ · Φj
v/2 = θ · wtv/2

where the first inequality uses (13) and the third inequality uses the
definition of the set Vj

i . Therefore, a node v ∈ V i
i either leaves V i

i

or becomes tight within d2/θe rounds.

We now prove that the weight of the nodes in C is small.

LEMMA 4. The total weight of the nodes in C is at most (2+ ε)
times the optimum.

PROOF. Assume that the distributed algorithm finishes after t ≥
0 rounds and let (α, β, γ, ω) be the final dual. A proof very similar
to that of Lemma 1 shows that the dual is indeed feasible. We
proceed as in the proof of Lemma 2.

Consider a node v ∈ C and observe that v must have been
tight before switching to the inside state. Thus wtt

v ≤ θwtv ,
and

P

e∈δ(v) βe,v ≥ wtv(1 − θ). We will now show that:

X

e∈δ(v)

βe,v ≤
X

e∈δ(v)

αe − 2ωv. (14)

Equation (14) is trivially satisfied if we consider only the steps in
which v is non-tight. In fact, in these steps ωv = 0 and βe,v =
αe, for all e ∈ δ(v).

Consider now a step in which v is tight. The value of the left-
hand side of Equation (14) does not change. If ωv increases by a
quantity Bv · pv , γv increases by a quantity pv . It follows that, for
all edges e = (v, u) between v and a non-tight neighbor u of
v in the current step, the value of αe also increases by at least pv .
Since there are at least 2Bv such neighbors, the right-hand side of
(14) cannot decrease.

Let apx and opt denote the weight of C and that of an optimum
solution, respectively. By weak-duality:

apx =
X

v∈C

wtv ≤
1

1 − θ

X

v∈C

X

e∈δ(v)

βe,v

≤
1

1 − θ

X

v∈C

X

e∈δ(v)

(αe − 2ωv).

Since every edge is incident to at most two vertices from C we have
that the right hand-side of the last inequality is bounded by

2

1 − θ

X

e∈E

αe −
X

v∈V

ωv

!

.

The lemma follows by choosing θ such that θ = 1 − 2/(2 + ε).
Note that, as required, 1/θ = O(1/ε) for ε ∈ (0, 1].

3.2 Edge-assignment phase
At the end of the node-selection phase we are left with a subset

C′ ⊆ C of the tight nodes such that all unassigned edges have both
their end-points in C′. In the following we let G0 = G[C′] be the
graph induced by the nodes in C′. Assuming that the given capVC
instance is feasible, there must be an assignment of the edges in
G0 to the vertices in C′ that obeys the original capacity bounds.
We describe a deterministic distributed algorithm which assigns at
most (2 + ε)Bv edges to each v ∈ C′ in O(log n/ε) rounds.

Our algorithm starts with all edges unassigned and computes a
final assignment iteratively. In each round t we consider all vertices
v ∈ V with at most (2 + ε)Bv incident unassigned edges, and we
assign all such edges (u, v) ∈ δ(v) to v. We continue until no
unassigned edges remain.

To prove that the number of rounds is poly-logarithmic we need
the following lemma. In the following let H be the set of vertices
with degree more than (2 + ε)Bv and let E(H) be the set of those
edges that have both of their endpoints in H. Finally use E(H) as
an abbreviation for the set E \E(H) of edges that have at most one
endpoint in H .

LEMMA 5. If there is a feasible assignment, then we must have
|E(H)| ≥ ε|E(H)|.

PROOF. Recall that δ(v) is the set of edges incident to v and let
π : E → V be a feasible assignment. We have that:

X

v∈H

|δ(v)| ≤ 2|E(H)| + |E(H)| (15)

since in the sum we count every edge in E(H) twice but all other
edges are counted only once. Moreover,

|E(H)| ≤
X

v∈H

|π−1(v)| (16)

since every edge in E(H) must be assigned to some node in H .
From equations (15) and (16) it follows that:

(2 + ε)
X

v∈H

Bv ≤
X

v∈H

|δ(v)|

≤ 2
X

v∈H

|π−1(v)| + |E(H)| ≤ 2
X

v∈H

Bv + |E(H)|.

Hence,

|E(H)| ≥ ε
X

v∈H

Bv ≥ ε|E(H)|

which proves the lemma.

LEMMA 6. If there is a feasible assignment, then the algorithm
above assigns at most (2+ε)Bv edges to each v ∈ V . The number
of rounds required is O(log n/ε).

PROOF. The capacity bound in the theorem follows immedi-
ately since for each vertex v in V there is at most one round t in
which we assign at most (2 + ε)Bv edges to it.

Let Et be the set of unassigned edges at the beginning of Itera-
tion t and let Gt = G[Et] be the subgraph of G induced by Et.
We also use Ht to denote the set of nodes v ∈ V whose degree is
more than (2 + ε)Bv in Gt. Note that for any t, there must exist a
feasible assignment in Gt as Gt is a subgraph of the initial graph
G where a feasible assignment exists. So we can apply Lemma 5
and conclude that:

|Et| = |E(Ht)| + |E(Ht)| ≥ (1 + ε)|E(Ht)|.

In round t all the edges in E(Ht) are assigned to some node and
so |Et+1| ≤ |E(Ht)|. Hence, |Et+1| ≤ 1

1+ε
|Et| and the num-

ber of unassigned edges decreases by a factor of (1 + ε) in every
round.

Since at most 2Bu edges are assigned to each u during the node-
selection phase, this concludes the proof of Theorem 2.

4. A LOWER BOUND
In this section we show that every efficient (poly-logarithmic)

distributed approximation algorithm for capVC needs to violate
the capacity constraints by a factor of at least two.

Consider the following two families of graphs G0
B,k and G1

B,k,
where B, k ≥ 1. Graph G0

B,k is formed by k + 1 levels

L0, L1 . . . Lk,

each one containing 2B + 1 nodes. Each node in level Li, i =
0, 1 . . . k − 1, is adjacent to exactly B nodes in level Li+1. Sym-
metrically, each node in level Li, i = 1, 2 . . . k, is adjacent to ex-
actly B nodes in level Li−1. There is no other edge in the graph. In
particular, each level Li induces an independent set. Graph G1

B,k,
differs from G0

B,k only for the fact that the nodes of the first level
L0 induce a clique. All the nodes of both graphs have capacity B.
Moreover, all vertices have cost zero, except for the nodes in level
Lk, which have cost one. See Figure 2 for an example.

A feasible solution of cost zero for G0
B,k is obtained by including

in the vertex cover all the vertices but the ones in level Lk, and
by assigning all the edges between level Li and level Li+1, i =
0, 1 . . . k − 1, to the nodes in Li.

A feasible solution for G1
B,k (with positive cost) is obtained by

including all vertices; the edges between level Li and level Li+1,
i = 0, 1 . . . k−1, are assigned to the nodes in Li+1. Moreover, the
edges of the clique induced by L0 are assigned to the nodes in L0.
Note that this is the unique feasible solution (since G1

B,k contains
nB edges).

The following lemma turns out to be useful in the proof of the
lower bound.

LEMMA 7. Consider a solution for G1
B,k which assigns at most

(B + C)-edges to each node, for some C ≥ 1. Let Ai be the total
number of edges assigned to the vertices in Li in this solution. Then

Ai ≥ (2B + 1)(B − iC) ∀i = 0, 1 . . . k.

PROOF. The proof is by induction on i. For i = 0 this is true
since the number of edges in the clique is (2B + 1)B and these
edges can be covered only by the nodes in L0. Assume now that the
hypothesis is true up to level i, i < k. It follows that the “residual”
capacity at level i is at most

(2B + 1)(B + C) − (2B + 1)(B − iC) = (2B + 1)(i + 1)C

and hence

Ai+1 ≥ (2B+1)B−(2B+1)(i+1)C = (2B+1)(B−(i+1)C).

THEOREM 3. For every fixed ε ∈ (0, 1], every distributed ap-
proximation algorithm for capVC which violates the capacity con-

straints by a factor at most (2−ε) requires Ω(n
1

1+log log n) rounds.

PROOF. (sketch) Consider one such algorithm. Let us run the
algorithm with input either G0

B,k or G1
B,k, where B and k will be

fixed later. This algorithm will assign at most B + C edges to each
node, with C < B. Recall that n = (2B + 1)(k + 1) = Θ(B k)

L1

L2

L3

L4

L1

L2

L3

L4

Figure 2: The graphs G1
B,k (on the left) and G0

B,k.

is the number of vertices in the graph. Let δ(n) = 1/ log log n.

Choose B = Θ(n
1

δ(n)+1) and k = Bδ(n)/2. Note that, since
C < B, for sufficiently large values of n:

B − k C ≥ B −
Bδ(n)

2
B1−δ(n) =

B

2
> 0.

Thus the solution computed for G1
B,k must include at least one

node from Lk. In fact, by Lemma 7, the number Ak of edges as-
signed to the nodes in Lk satisfies

Ak ≥ (2B + 1)(B − k C) > 0.

Recall that the solution computed for G0
B,k cannot include such

nodes. This concludes the proof since each node in Lk needs

Ω(k) = Ω(n
1

1+log log n)

rounds to “know” whether the nodes of the first level induce a
clique or not.

5. REFERENCES
[1] R. Bar-Yehuda and S. Even. A local-ratio theorem for

approximating the weighted vertex cover problem. Annals of
Discrete Mathematics, 25:27–45, 1985.

[2] F. Chudak, T. Erlebach, and A. Panconesi. Primal-dual based
distributed algorithms for vertex cover with soft capacities
and facility location. Manuscript, 2004.

[3] J. Chuzhoy and J. Naor. Covering problems with hard
capacities. In Proceedings, IEEE Symposium on Foundations
of Computer Science, pages 481–489, 2002.

[4] D. Dubhashi, O. Häggström, G. Mambrini, A. Panconesi,
and C. Petrioli. Blue pleieades, a new solution for device
discovery and scatternet formation in multi-hop bluetooth
networks. To appear in ACM Wireless Networks.

[5] U. Feige. A threshold of ln n for approximating set cover. In
Proceedings, ACM Symposium on Theory of Computing,
pages 314–318, 1996.

[6] R. Gandhi, E. Halperin, S. Khuller, G. Kortsarz, and
A. Srinivasan. An improved approximation algorithm for
vertex cover with hard capacities (extended abstract). In
Proceedings, International Colloquium on Automata,
Languages and Processing, 2003.

[7] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan.
Dependent rounding in bipartite graphs. In Proceedings,
IEEE Symposium on Foundations of Computer Science,
pages 323–332, 2002.

[8] D. Grable and A. Panconesi. Nearly optimal distributed edge
colouring in o(log log n) rounds. Random Structures and
Algorithms, 10(3):385–405, 1997.

[9] S. Guha, R. Hassin, S. Khuller, and E. Or. Capacitated vertex
covering with applications. In Proceedings, ACM-SIAM
Symposium on Discrete Algorithms, pages 858–865, 2002.

[10] Halperin. Improved approximation algorithms for the vertex
cover problem in graphs and hypergraphs. SIAM J. Comput.,
31, 2002.

[11] D. S. Hochbaum. Approximation algorithms for set covering
and vertex cover problems. SIAM J. Comput., 11:555–556,
1982.

[12] Jain and Vazirani. Approximation algorithms for metric
facility location and k-median problems using the
primal-dual schema and lagrangian relaxation. JACM:
Journal of the ACM, 48, 2001.

[13] S. Khuller, U. Vishkin, and N. Young. A primal-dual prallel
approximation technique applied to weighted set and vertex
covers. J. Algorithms, 17(2):280–289, 1994.

[14] F. Kuhn and R. Wattenhofer. Constant-time distributed
dominating set approximation. In Proceedings, ACM
Symposium on Principles of Distributed Computing, pages
25–32, 2003.

[15] R. Rajaraman L. Jia and T. Suel. An efficient distributed
algorithm for constructing small dominating sets.
Proceedings, ACM Symposium on Principles of Distributed
Computing, 2001.

[16] M. Luby. A simple parallel algorithm for the maximal
independent set problem. SIAM J. Comput., 15:1036–1053,
1986.

[17] M. Luby. Removing randomness in parallel without
processor penalty. J. Comput. System Sci., 47(2):250–286,
1993.

[18] A. Panconesi and A. Srinivasan. The local nature of
delta-coloring and its algorithmic applications.
Combinatorica, 15(2):255–280, 1995.

[19] Khaled M. Alzoubi Peng-Jun Wan and Ophir Frieder.

Distributed construction of connected dominating set in
wireless ad hoc networks. Proceedings of Infocom, 2002.

[20] S. Rajagopalan and V.V. Vazirani. Primal-dual rnc
approximation algorithms for (multi)set (multi)cover and
covering integer programs. SIAM J. Comput.,
28(2):525–540, 1998.

[21] R. Rajaraman. Topology control and routing in ad hoc
networks: a survey. Sigact News, 2002.

